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ABSTRACT OF THE THESIS

DEFENSE BY DECEPTION AGAINST STEALTHY ATTACKS IN POWER

GRIDS

by

Md Hasan Shahriar

Florida International University, 2020

Miami, Florida

Professor Mohammad Ashiqur Rahman, Major Professor

Cyber-physical Systems (CPSs) and the Internet of Things (IoT) are converging to-

wards a hybrid platform that is becoming ubiquitous in all modern infrastructures.

The integration of the complex and heterogeneous systems creates enormous space

for the adversaries to get into the network and inject cleverly crafted false data into

measurements, misleading the control center to make erroneous decisions. Besides,

the attacker can make a critical part of the system unavailable by compromising the

sensor data availability. To obfuscate and mislead the attackers, we propose DDAF, a

deceptive data acquisition framework for CPSs’ hierarchical communication network.

Each switch in the hierarchical communication network generates a random pattern

of addresses/IDs by shuffling the original sensor IDs reported through it. During the

data acquisition from remotely located sensors to the central controller, the switches

craft the network packets by replacing a few sensors’ associated addresses/IDs with

the generated deceptive IDs and by adding decoy data for the rest.

While misleading the attackers, the control center must retrieve the actual data

to operate the system correctly. We propose three remapping mechanisms (e.g., seed-

based, prediction-based, and hybrid) and compare their robustness against different

stealthy attacks. Due to the deception, artfully altered measurements turn into ran-

dom data injections, making it easy to remove them as outliers. As the outliers and

vi



the estimated residuals contain the potential attack vectors, DDAF can detect and

localize the attack points and the targeted sensors by analyzing this information.

DDAF is generic and scalable to be implemented in any hierarchical CPSs network.

Experimental results on the standard IEEE 14, 57, and 300 bus power systems show

that DDAF can detect, mitigate, and localize up-to 100% of the stealthy cyberattacks.

To the best of our knowledge, this is the first framework that implements complete

randomization in the data acquisition of the hierarchical CPSs.
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CHAPTER 1

INTRODUCTION

Cyber-physical systems (CPSs) consolidate sensing, communication, processing, and

control of both cyber and physical domains [GPGV14]. They are omnipresent in

critical infrastructure such as transportation systems, smart grids, smart health care,

sewage/water management, etc. The Internet of things (IoT) has opened up a new

dimension to the CPS through phenomenal unification enabling real-time monitoring,

data exchange, and optimal control. State estimation (SE) is one of the core parts

of the CPSs control system that plays a vital role in secure and appropriate control

decisions.

1.1 General Statement of the Problem

CPSs are getting larger with heterogeneous sensor interaction due to widespread

acceptance, creating a massive attack space for the adversaries. The contemporary

cyberattacks are sophisticated enough to overcome legacy defense tactics like intrusion

or anomaly detection systems. Utilizing the targeted system’s knowledge and states,

the adversaries can launch influential cyber attacks like false data injection (FDI)

attacks, covert attacks, zero dynamics attacks, replay attacks, and denial of service

(DoS) attacks [YHK+12,RSM19].

Cyber-attacks in CPS are performed in several ways. By eavesdropping on the

communication channels, a powerful intruder gains access to the sensor data. De-

pending on the attack goal, he/she injects some malicious stealthy data into the

sensor reading, misleading the SE of CPS to his/her aspired direction. The attacker

can also flood the targeted network devices with superfluous requests and overloads

1
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Figure 1.1: A stealthy attack in power grids SCADA network, where an attacker
compromises the communication channel to inject malicious data.

the system, which prevents legitimate requests from the control center and makes the

overall system unobservable! [RSJM19,NHS+20].

Cyber-attacks not only hamper the services’ reliability but also introduce sub-

stantial financial losses. Stuxnet, a 500-kilobyte computer worm, attacked over fif-

teen Iranian facilities in 2010, destroying over a thousand uranium enriching cen-

trifuges [Lan11]. A recent report states that the US government could lose $1 trillion

if a Stuxnet-like attack would be carried out in the US smart grid [Dri15]. Again,

BlackEnergy Malware, a denial-of-service (DoS) attack on supervisory control and

data acquisition (SCADA) system, is responsible for a massive power outage in

Ukraine [Kov16]. More recently, some utility companies in Utah, Wyoming, and

California power grids also suffered from cyber-attacks that caused power outages in

those areas [Sob19].

1.2 Research Purpose and Objectives

In most of the CPSs, the devices in the SCADA networks have limited computational

power to perform high-end encryption on the sensor data streams [AQS+15,SPA+18,

AFA+20]. Besides, some critical infrastructures (e.g., power systems) have a time

2



constraint on the data acquisition process. For example, IEC 61850 standard enforces

a maximum end-to-end time delay of 4 ms for generic object-oriented substation

event (GOOSE) messages within a substation [IEC]. Thus, in some cases, despite

having sufficient computational capability, high-end security may not be applied due

to the time-restriction. Hence, several studies showed, once a sophisticated attacker

gains adequate knowledge about the targeted system’s topology and states, he/she

can easily evade the existing defense mechanisms by utilizing the resources in the

generation of the attack data [LNR11,NSRU20].

“All warfare is based on deception. Hence, when we are able to attack, we must

seem unable; when using our forces, we must appear inactive; when we are near, we

must make the enemy believe we are far away; when far away, we must make him

believe we are near.— Sun tzu, The Art of War [TTS+71]”. As the author said,

deception also plays a vital role in misleading attackers in cyberwar, stopping them

from accomplishing their intent. The fundamental goal of our proposed framework is

to provide a deceptive, secure, and robust data acquisition framework. As the smart

grid is a perfect example of modern CPSs, we consider a smart grid hierarchical

communication network as our testbed.

Our design objectives are to ensure the CIA triad (confidentiality, integrity, and

availability) for the CPSs data acquisition process, which are described as follows:

• To maintain confidentiality and preserve the systems’ privacy from the adversary,

we hide the true information of the system and show the artfully crafted sensors

data. Such a move misleads the attacker and prevents reconnaissance attacks in

the system states.

• To maintain the integrity and continue unperturbed system operation, any mali-

cious data injections need to be removed from the system control loop. Thus, we

3



aim to mitigate the stealthy FDI injection attacks by identifying the compromised

sensors and eliminate them from the SE procedure.

• To ensure the availability of the sensor data and optimize the dynamic behavior of

the system in run-time, the system must be observable to EMS. However, in the

DoS attacks, some parts of the system might go offline, making the whole system

unobservable. Thus, the goal is to predict the missing data and keep the system

running around the optimal operation point.

• To detect, mitigate, and localize the attacks, and estimate the states accurately,

EMS needs to remap the randomized sensors data. The objective is to design

a remapping mechanism for EMS to reproduce the original data sequence while

filtering out the compromised sensors as outliers and impute missing data if neces-

sary. Moreover, due to the deception, any stealthy FDI attack attempt turns into a

random data injection, which is easily detected and eliminated by the existing bad

data detection techniques. As the attacked sensors become outliers, analyzing their

residual values reveals the injection data, the targeted sensors, and the attacker’s

position in the network.

In general, the proposed deceptive framework makes the system resilient to different

stealthy attacks and reveals the existence of the attacker.

1.3 Contributions

Cyberattacks are evolving and becoming persistent in modern control systems. We

implemented deception as a defense in the networked control systems to defend against

stealthy attacks. We designed a deceptive data acquisition framework, called DDAF,

for any hierarchical communication system of CPSs that misleads the stealthiest cy-

berattacks. DDAF includes modeling the hierarchical network as a tree, where the

4



switches are modeled as nodes. To maximize the deception, we designed a tree-based

randomization algorithm that ensures the dispersing and impairing of the targeted

stealthy attacks. To reallocate the randomized sensors, we presented three different

mechanisms: seed-based, prediction-based, and hybrid. For seed-based remapping,

we considered implicit sharing of randomization information using hardware/software

tokens. Besides, we presented the attack detection and localization algorithm utilizing

the residual data from state estimation. We modeled and trained a long-short term

memory (LSTM) model for prediction-based remapping. Finally, we designed a hy-

brid model combining the first two mechanisms and evaluate all of them on standard

IEEE bus systems.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows: We introduce the problems and our

contribution in Chapter 1. We present the system models in Chapter 2. The related

works and background information are discussed in Chapter 3. We introduce our

proposed DDAF in Chapter 4. Chapter 5 discusses the technical details of the de-

ception mechanism. Chapter 6 explains three types of remapping mechanisms along

with example case studies. We describe the implementation of DDAF in Chapter 7.

The evaluation setup and result analysis are formulated in Chapter 8. At last, we

conclude the thesis and discuss the future work in Chapter 9.
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CHAPTER 2

SYSTEM AND THREAT MODELS

This chapter describes the system and threat models considered for the implementa-

tion and evaluation of DDAF.
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L-1 Substation

L-2  Substation

Figure 2.1: A two-level hierarchical communication network in power grids.

2.1 System Model

Future CPS networks are supposed to maintain a hierarchical communication struc-

ture as it lessens the communication overhead and assures the system’s stability, relia-

bility, and efficiency [WZYC16]. With the increasing trend in distributed generation,

renewable energy, and electricity demands, smart grid hierarchical communication
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EMSL-1 Node L-2 Node

Figure 2.2: Tree diagram of a two-level hierarchical communication network.

network is becoming a preferable option day by day [LLWC16]. Figure 2.1 shows our

considered the hierarchical communication network in a smart grid: a model with

two layers of substations switches in the hierarchy.

The sensors in the substations can be remote terminal units (RTUs), intelligent

electronic devices (IEDs), phasor measurement units (PMUs), etc. The sensors are

located within the substations and directly report the measurement data to their

substation switches. Thus, we define the sensors as the layer-0 (L-0) elements of

the network. A Layer-1 (L-1) substation only receives measurement data from its

own sensors, whereas a Layer-2 (L-2) substation receives data both from its sensors

and the underneath L-1 substations. In a two-layered network, L-2 switches directly

report data to the EMS. After collecting remote sensor data, the EMS runs the

SE algorithm to estimate the system’s states and take appropriate control decisions.

Such hierarchy forms a tree structure, where the sensors are the leaf nodes, substation

switches as internal nodes, and EMS as the root. Figure 2.2 shows the tree structure

of the hierarchical network shown in Figure 2.1. Moreover, we define a communication

channel based on the layer of the outgoing switch, when forwarding data toward the

EMS. Thus, a channel between L-1 and L-2 switches is defined as L-1 channel and

the one between L-2 switch and EMS is defined as L-2 channel.
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2.2 Threat Model

In this section, we define the threat model according to the attacker’s capabilities and

goals. Figure 2.3 illustrates the attack tree that we consider in this work. During the

data acquisition process, there remain multiple vulnerable points, which an adversary

can compromise. The attacker’s accessibility/position into the network plays a very

crucial role in the attack’s success. In general, we classify an adversary’s position

into two groups. Firstly, the attacker can compromise the individual targeted sen-

sors [BAF20, ALD13, VVP+06]. In this case, the attacker is sophisticated enough to

be distributed to the network’s edge nodes. Sensors are usually located within a sub-

station, which are highly secured to be physically accessed. Since this type of attack

comes with a great cost, it is less common in reality. As the sensors are the leaf nodes

network, we define such sensor attacks as L-0 attacks. The second type is compro-

CPS
Cyberattack

Compromise	Sensors	
(Level-0)

Compromise	Network
(Level-1,	Level-2,	etc.)

Reconnaissance
Inject	Malicious

Packets	
(FDI	Attack)

Drop	Packets	
(DoS	Attack)

Active AttacksPassive Attacks

Figure 2.3: Considered attack tree in CPSs.

mising network devices, such as routers, switches, channels, etc. As these elements

span the overall SCADA network, physical security is fragile at some points. More-

over, high-end encryption may not be implemented in all the network switches due
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to low computational capabilities. Thus, compromising the communication network

is more prevalent in the CPSs cyberattacks. However, network switches or routers

are mostly in secured locations as they also belong to the substations/local control

center. Thus, communication channels remain the most vulnerable points. Therefore,

when the attacker compromises the L-1 communication channels, we consider them

as L-1 attacks; in L-2 channels, we define them as L-2 attacks.

On the other hand, depending on the attacker’s intend, we again categorize the

cyberattacks into two classes— active attacks and passive attacks [SSVE04]. Passive

attacks are the process of reconnaissance of the system states, where the attacker gets

into the network, sniffs, and analyzes the packets without obstructing the system’s

normal operation. Such an attack aims to study the parameters of the physical

system and determine the optimal attack tactics without creating any attention of

the defender. A passive attack is dangerous for the confidentiality of the system.

Active attacks are the injections of malicious data into the sensor measurements

that help achieve the attacker’s goal. Active attacks exploit the integrity as well as the

availability of sensor data. The effectiveness/stealthiness of the active attacks depends

on the success of the passive attacks. We consider two influential cyberattacks, e.g.,

FDI attacks and DoS attacks, as the active attacks. Both of them fall within the

class of man in the middle attacks. In the first case, the attacker injects malicious

data into the network packets to mislead the system in a hazardous direction. In DoS

attacks, the attacker drops the targeted packets, leaving the sensors from a critical

part unavailable. As a result, the total system becomes unobservable and may collapse

due to the delayed response. In this thesis, we evaluate the performance of DDAF,

considering all the combinations of cyberattacks as discussed.

The proposed framework is resilient to single-level attacks as well as attacks com-

promising the sensors at multiple levels. However, we focus only on single-level at-
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tacks in the evaluation to limit the number of combinations. The mixed-level attack’s

impact will be somewhat in between the impact extents of these levels. Another as-

sumption is that there is only one kind of attack at any given time. Thus, the nodes

at a stage of the attack tree are considered as OR-nodes. Moreover, we assume that

the attacker may have the necessary (complete or partial) knowledge of the bus topol-

ogy and the transmission lines’ electrical properties to compute stealthy attacks. It

is also assumed that the attacker does not have the historical time-series sensor data;

however, (s)he can access a few of the system nodes to read and compromise the

measurement data.
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CHAPTER 3

BACKGROUND AND LITERATURE REVIEW

In this chapter, we present a brief background of the terminologies used throughout

the paper.

3.1 CPSs Hierarchical Network

The hierarchical network model of CPSs is a way of building a reliable, efficient, col-

laborative, and economic distributed network [WZYC16]. There exists a significantly

large number of nodes and branches at the bottom compared to the upper layers. The

control center is located at the root of the network tree and communicates with the

edge nodes through the branches. CPSs communication networks mostly comprise

a bi-directional communication channel, where nodes of any level can send data to

their children and vice-versa. Throughout this paper, we use the terms layer and level

interchangeably.

3.2 State Estimation and Bad Data Detection

State estimation (SE) is one of the core parts of the SCADA system of CPSs, and

bad data detection (BDD) is one of the main functions of SE. SE refers to a math-

ematical algorithm that processes raw measurement data collected from the remote

sensors and estimates the system states [JH20,SSU16]. Usually, a power system is an

overdetermined system with redundant measurements. Thus, SE and BDD help find

the best states by considering only the compliant measurement data and eliminating

outliers. In CPSs, if the measurement vector is z and the states vector is x, then their

relationship can be presented as

z = h(x ) + e
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where, h(x ) represent the measurement functions that relate the measurement set

to the states vector and e is the set of measurement errors, which are assumed to

be uncorrelated and follow normal distribution [AE04]. A general approach to esti-

mate state is Weighted Least Square (WLS) when performing SE based on available

measurements. To achieve an optimal solution, WLS formulates SE as a residual min-

imization problem [WXH+17]. Linear estimation is done with the following equation:

x̂ = (H TWH )−1H TWz (3.1)

In the above equation, x̂ , H , W represent the most probable system states vector,

the Jacobian matrix, and a diagonal weighting matrix, respectively. After system

sates are estimated, residuals between measurements and estimated states are used

to identify bad data. So, the estimation of measurements, ẑ = h(x̂ ) and the mea-

surement residuals set, r = |z − ẑ |. If we consider that threshold of residual as τ ,

any measurement zi is regarded as bad data and removed from the SE procedure if

ri > τ .

In power grids, the measurements are real and reactive line power flows, real and

reactive bus power injections, phasor measurement unit (PMU), etc. The states are

the voltage magnitudes and angles of the buses. DC power flow is used in contingency

analysis due to its simplicity, robustness, and high computation speed, and it simpli-

fies full power flow by looking only at active power [VVP+06]. In DC approximation,

all voltage magnitudes are considered to be 1.0 (unity), and reactive power flow is

zero. So, the state vector only contains the phase angles of the bus voltages i.e. x =

[θ], where θ is the voltage angles vector. We use SE −BDD to indicate the SE and

BDD algorithms together for the rest of the thesis.
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3.3 False Data Injection Attacks

In FDI attacks, sensor readings are compromised so that the malicious data com-

ply with the system topology and remain undetected by the BDD. An attack vector

is defined as a set of malicious data to be injected into a set of sensor measure-

ments. A random attack vector creates an anomaly, and the compromised sensors

become outliers, leaving the system safe. However, if the attack vector is calcu-

lated intelligently considering the targeted system’s information, it can bypass the

BDD [LNR09, XWG+17]. In FDI attacks, the goal of the attacker is to change the

state variable x̂ to x̂f by modifying it with a malicious amount of c, where

x̂f = x̂ + c and zf = z + a

To remain stealthy, false data a is maliciously injected into the measurement set z

and the observed measuring is zf . Now if the condition a = h(c) holds, this false data

a will be hidden from the traditional BDD, because the residual:

r = ||zf − h(x̂f )|| = ||(z + a)− h(x̂ + c)|| = ||z − h(x̂ )||

Thus, the data injection disappears from the residual, and the attack remains

stealthy. This attack requires full knowledge of the targeted system’s topology, pa-

rameters, and measurement configuration. For the rest of the paper, we use the term

FDI to refer to the stealthy FDI attacks.

3.4 Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural networks that can

learn the temporal behavior of the dataset [DBDJH14]. The nodes in the RNN are

connected as a directed graph forming a temporal sequence. RNN can be applied

to sequential data prediction such as handwriting recognition, time series anomaly
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detection, speech recognition, music composition, etc. Figure 3.1 shows the intercon-

nection of RNN network architecture, where the output of one block becomes the

input of the another. An RNN model is formed with a chain of repeating modules of

neural networks. The building block of RNN is shown in Figure 3.2. For each time

step t, the activation a<t> and the output y<t> are expressed as follows:

a<t> = g1
(
Waaa

<t−1> +Waxx
<t> + ba

)
(3.2)

and

y<t> = g2
(
Wyaa

<t> + by
)

(3.3)

where Wa, Waa, Wya, ba, by are weights/coefficients that are shared temporally

and g1, g2 activation functions. Usually, sigmoid is used as the activation function as

followed:

g(z) =
1

1 + e−z
(3.4)

There are different types of RNN models, depending on the dimension of input

and output sequence. In this project, we consider the many to one version, where

multiple time-steps of immediate historical data are provided to predict the next

batch of data. Despite different benefits, RNN suffers from ‘short term memory’ and

‘vanishing gradient’ problems. To handle these issues, we use the version of gated

RNN, Long short-term memory.

3.5 Long Short-term Memory

Long short-term memory (LSTM) is an RNN architecture with the capability of

learning long-term dependencies of time-series data. In 1997, Hochreiter & Schmid-

huber first introduced them, and later many people refined them [HS97,GES02,SM19].
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Figure 3.2: A block of RNN chain architecture

LSTM solves the typical RNNs’ limitations, where they are designed to hold long term

memories. Figure 3.3 shows the flow diagram of a LSTM module. Multiple gates con-

trol the information propagation through the cell state, which is the horizontal line

running through the top of the diagram. Cell state contains the information ct, which

is controlled by the gates. Gates control the operation of each module, controlling

which information should pass and which should not. They contain sigmoid neural

network layers and are used in element-wise multiplication operation to regulate the

information flow.
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Figure 3.3: A block of LSTM architecture

Among the steps a module takes during the information processing, the first one is

to decide what information should be removed from the cell state. This is controlled

by the ‘forget gate layer.’ As shown in the following equation:

ft = σ (Wf · [at−1, xt] + bf )

Forget gate ft outputs a number between 0 to 1 for each of the elements in the

cell state ct−1, where 1 means completely allow to keep propagating, and 0 means

complete removal. Similarly, the ‘input gate layer’ controls which elements in the

cell state should be amended with information. Besides, a tanh layer outputs c̃t, the

updated cell state vector added to the previous information. The output of ‘input

gate layer’ it and new candidate c̃t are calculated as follows:

it = σ (Wi · [at−1, xt] + bi)

c̃t = tanh (Wc · [at−1, xt] + bc)

Finally, the cell state updated with a portion of the previous information ct−1,

and new information c̃t, controlled by ft and it, respectively.

16



ct = ft ∗ ct−1 + it ∗ c̃t

Finally, the module’s output is also controlled by a layer called the ‘output gate

layer’. The outcome depends on the updated cell state ct. First, a sigmoid layer

controls which elements of the cell state should go to output. Secondly, a tanh layer

determines what the output should be. The following equations determine at, the

output of the module.

ot = σ (Wo [at−1, xt] + bo)

at = ot ∗ tanh (ct)

3.6 Literature Review

This section presents the related works that are closely related to the research work

presented in this thesis. Moving target defense (MTD) techniques is extensively

proposed to defend against different cyberattacks on the sensory channels.

There are several works introducing uncertainty/randomness in the CPSs control

loop. Griffioen et al. proposed an MTD introducing stochastic and time-varying

parameters in the control loop of the CPS [GWS20]. Giraldo presented MTD by

randomly changing the availability of the telemetry sensor data for detecting and

minimizing the impacts of FDI attacks [GCS19]. Rahman et al. reduced the window

of the attack by adding uncertainty in the sensor being considered in the state es-

timation process [RASB14]. Zhang et al. showed an MTD mechanism could fail to

detect FDI attacks if the number of lines is less than twice the number of states in

the power system [ZDY+19]. Hu et al. proposed a stealthy attack detection strategy

leveraging skewness coefficients to distinguish the forged residuals from the attack-
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free residuals [HLY+19]. Markov model-based games are also useful in the modeling

of MTD. Maleki et al. modeled a Markov chain for the interaction between a de-

fender and an attacker [MVK+16]. In some works, authors examined to perturb the

considered systems’ physical properties to make the attack vectors invalid. Laksh-

minarayana et al. proposed a formal model for reactance perturbation-based MTD

using D-FACTS [LY18]. Tian et al. proposed a hidden MTD using D-FACTs in smart

grids to defend structured FDI attacks [TTGL18]. In [LW20], Liu et al. considered

the reactance of D-FACTS lines as decision variables that affect the trade-off between

the system loss and the MTD effectiveness.

Some researches focused on deceiving the attacker in the MTD with crafty network

packets. Li et al. used CPSMorph creating several fake network sessions along with

the actual ones to hide them from attackers [LDZ14]. Pappa et al. proposed a seed-

based end-to-end IP hopping among trusted peers of a SCADA system [PAG17].

They used the seed to generate random IP and share them through a pre-installed

public-private encryption channel. Groat et al. introduced MT6D as a secured IPv6

based smart grid communication system [GDU+12].

Some other research works are also performed for deceptive defense in CPS. Mc-

Queen et al. explored deception defenses in control system cybersecurity and cat-

egorized them into several dimensions [MB09]. Lin et al. proposed a randomized

data acquisition into multiple rounds [LKI18]. The software-defined network-based

framework controls the network flows and collects real measurements from randomly

selected online sensors and spoof measurements for the rest. However, as only a few

sensors send original data at each session, an intelligent attacker may inject false data

into the online devices. Even analyzing the pattern of the sensor measurements may

give the attacker insight into the correct measurement. In another work, they pro-

posed a physical function virtualization technique along with randomizing and craft-
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ing the decoy data to disrupt the reconnaissance attack in power grids [LZHZ20].

However, an attacker can inject FDI attacks into a part of the system, ignoring

the rest of the system information. Thus, their proposed approach only secures the

system where virtual nodes are placed, leaving some parts unsecured. Moslemi et

al. propose a maximum likelihood estimation-based decentralized cyber-attack de-

tection [MMV17]. Ma et al. proposed a zero-sum Markov game to model dynamic

interactions between attacker and defender and demonstrated a possible way of de-

fense using deception [MYLR12].

Several works consider data-driven approaches to detect cyberattacks and the

imputation of missing data [HSD+20, SHRAJ20, NSRU19]. Ayad et al. present an

RNN-based FDI attack detector [AFYES18]. In [YZL+20], Yang et al. proposed a

time series analysis method to detect FDI attacks. Li et al. proposed autoencoder

and LSTM in FDI attack detection [LHQZ20]. To predict the stability of the power

system, Alazab et al. proposed multidirectional LSTM [AKK+20]. LSTM models

are also popular in missing data prediction. Verma et al. proposed an LSTM based

missing data predictor for health care [VK19]. In [KKC18], Kim presented an LSTM-

based daily load forecasting mechanism.

Even though, as mentioned above, there exist a few works on partial randomiza-

tion of the data acquisition process. However, our proposed framework introduces

complete randomization that secures the overall system. Besides, we propose an in-

telligent remapping that avoids the overhead of an additional communication channel

or seed-based sharing. The existing data-driven defense techniques are mostly attack

specified and do not provide a complete immunity. However, DDAF is generic and

offers a complete solution for the system’s robustness against different cyberattacks.
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CHAPTER 4

PROPOSED FRAMEWORK

DDAF applies to CPS’s hierarchical networked control system. In a SCADA network,

the sensors send measurement data from the remote locations to the control center

through the intermediate access points/switches. Based on the connectivity, the nodes

in the system form a tree, where each node receives the data packets from its child

nodes and forwards them to its parent node. Figure 4.1 shows the key features of

DDAF.

Sensor

random
IDs

Packet 
Crafter

Deception at Node

Reported
Packets

Remapping
Mechanism

SE &
BDD

Estimated 
States

Remapping at EMS

Figure 4.1: Keys features of DDAF.

As the nodes need to analyze and modify the network packets, the ”deceiving”

nodes are equipped with software-defined networking (SDN) controllers [DKG+14].

An SDN controller can read, edit, and assemble packets in run-time. In modern

communication networks, SDN is widely implemented. In case of the unavailability

of SDN switches, similar capabilities can also be implemented on the conventional

switches by VMware and Nicira [Doh16].
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The deception mechanism is implemented at the SDN controller of the nodes. EMS

assigns each sensors in any of the three categories: randomized, decoyed, and fixed and

share the information with the nodes. Nodes keep track of the assigned sensor types

and utilize them during the deception process. As a part of the deception, each node

does two routine tasks: i) recID-randID pair generation, and ii) packet crafting. A

received ID - random ID or recID-randID pair contains two sets of IDs. The first

one is the received IDs from the child nodes. The received IDs are the set of sensor

IDs whose data packets are reported to the node by its child nodes. At a specific

interval, the received IDs are shuffled using a randomization algorithm to generate

the random IDs. Such a pair of IDs are used to craft the packets during the data

acquisition process, explained in the following chapter.

On the other hand, another routine task that a node executes is forwarding the

packets. Whereas the conventional nodes forward the packets to the next devices, in

DDAF, the SDN controller crafts the packets before forwarding. The packet crafting

is done in two steps. Firstly, the nodes replace the received IDs of the randomized

sensors with the deceived IDs using the node’s recID-randID pair. Secondly, to

support such randomization, the nodes calculate and add decoy data for the sensors

in decoyed. The process continues at each node until the packets reach EMS. Whereas

packet crafting is almost a continuous process, recID-randID generation is carried

out whenever the deception patterns need to be updated, and it depends on the

defender’s choice. Thus, to maintain the defense’s dynamicity, EMS asks the nodes

to update their recID-randID pairs at a regular interval.

We propose three reallocation mechanisms to recover the original IDs from the

reported packets. They are prediction-based remapping, seed-based remapping, and

hybrid remapping. In the prediction-based remapping, a recurrent neural network

model is trained on the historical time-series sensor data and used to predict the
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expected measurement data. However, as EMS receives randomly shuffled sensor

data, we propose a combinatorial optimization algorithm that finds the optimum

sequence of recovery to find the correct pattern of the reported data. A measurement

is considered in recovered data only if within a specific range of the predicted value

in the remapping algorithm. Hence, in the case of stealthy FDI attacks, any sudden

change in any measurement would be easily detected by the deviation between the

predicted and reported measurement and removed from the recovered data. Such

removal eliminates the compromised sensors and makes the system immune to the

stealthy FDI attacks.

For the seed-based mechanism, we propose that the randomization algorithm uses

a seed value generated using the hardware/software token-based RSA SecurID au-

thentication mechanism. This technique generates a secure authentication code (used

as seed) for each node using the built-in clock and the node’s factory encoded secret

key [sec]. Thus, each node generates a different seed simultaneously and uses it while

running the randomization algorithm. Therefore, seed-based remapping does not

consider any prediction model; instead, EMS generates the same seeds as the nodes

do. As all the nodes are interconnected through physical lines, they can maintain

the clock synchronization with EMS. Thus, whenever the nodes generate the seeds,

EMS follows the same steps to generate the same seeds using the nodes’ secret keys,

which are already shared with the EMS during the installation stage. Using the seed

values, EMS runs the same randomization algorithm for all the nodes to generate

the recID-randID pairs and build a stack, called ID-Stack. Using the ID-Stack con-

taining all the randomization information, EMS recovers the original IDs from the

collected crafted packets by running a remapping algorithm.

The third remapping mechanism integrates the first two, thus called hybrid remap-

ping. The features of both seed-based and prediction-based algorithms are present
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in the hybrid remapping. Seed-based remapping is considered the preferred mech-

anism as they provide the exact information of the randomization generating the

ID-Stack. However, in case of the unavailability of the ID-Stack, the framework goes

for prediction-based remapping. In both cases, the predicted measurement values are

used to pre-filter the data or impute them if needed. The predictive filtering mitigates

the impacts of FDI attacks, and imputation tackles the DoS attacks.

Finally, once the remapping is done, EMS executes the necessary routine tasks

(i.e., SE − BDD) on the remapped original data and takes control decisions for the

system’s optimal operation. As the sensor data packets are sent with deceptive IDs,

if an attacker injects stealthy false data into some targeted sensors, the injection will

happen to the wrong measurements and result in bad data. In the prediction-based

technique, most compromised sensors are eliminated during remapping as they do not

follow the trend. Later, SE − BDD further removes outlier and makes the system

robust from stealthy FDI attacks. On the other hand, in the seed-based technique,

nothing is removed during the remapping step; instead, the SE − BDD procedure

does the cleansing task. Thus, by making the compromised sensors outlier, DDAF

removes FDI attacks that would remain undetected without the randomization.

Whereas the prediction-based technique can only mitigate the attacks, the seed-

based one can also localize them. The seed-based DDAF analyzes the residual data

and the outlier sensors to detect stealthy FDI attacks. If there is an attack, the

framework provides the attacker’s location in the communication network and the

targeted sensors. In detecting and localizing the attack, the residual vector and the

outliers are reshuffled using the recID-randID pairs of each level in the ID-Stack to

observe them from an attacker’s perspective. As an FDI attack vector follows the

system topology (a = h(c)) if there is an attack at any network level, the shuffling
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finds a topological pattern into the residual data and the outlier senors’ locations. The

following section provides a detailed overview of different parts of the framework.
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CHAPTER 5

DECEPTION MECHANISM

This chapter shows the details of each part of the deception mechanism of DDAF.

Figure 5.1 shows the tasks of the nodes for the deception mechanism. We model

the nodes with some common attributes, as explained in Table 5.1. The deception

mechanism is divided into two steps. EMS initiates the deception by sending instruc-

tions to the sensors. The nodes store the instructions and run the randomization

algorithm to determine the randomization plan. On the other hand, during the data

acquisition steps, the nodes randomize the IDs and add decoy data as the core part

of the deception. The following sections lay out the details of each step.

Table 5.1: Attributes of a node in the hierarchical network.
Attributes Type Description Example
nodeLevel string Level of the node, ’l’ ’2’
nodeID object ID of the node, S l

i S2
1

leaf boolean leaf node or intermediate node False
parent object ID of the parent node, S l

i S3
1

nchild integer Number of child nodes 4
childs list Address of child nodes [S1

1 , S1
2 , ..]

sensors set Sensors under the node {1, 2, ..., m}
fixed set Sensors with fixed IDs {1, 2, ..., m-2}
randomized set Sensors for ID randomization {3, 4, ..., m-1}
decoyed set Sensors for decoyed data {5, 6, ..., m}
deceptive set Deceiving sensors to the node {1, 2, ..., m}
totDec integer Number of sensors in deception 12
decoyed set Decoyed sensors to the node {1, 2, ..., m}
totRem integer Number of sensors remaining to

be deceived
8

reported set Reporting sensors to the node {1, 2, ..., m}
values list sensor measurements [10, 20, ..., -15]
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Figure 5.1: Deception mechanism in the nodes of the hierarchical network.

5.1 Deception Instruction

Firstly, EMS sends the deception instructions to the sensors, and the nodes keep

track of the instructions. The instruction contains a type flag where 0, 1, and 2

indicates fixed, randomized, and decoyed, respectively. Thus, each node constrains an

m dimensional array T to store the sensor-wise deception instructions, where m is

the number of sensors.

5.1.1 recIDs-randIDs Pair Generation

recIDs-randIDs pair generation is the first step of the deception process. The re-

ceived IDs of type-1 (random) sensors recIDs are shuffled among themselves to gen-

erate the deceptive random IDs randIDs. The set randIDs is generated following

procedure randIDGen, as shown in Algorithm 1 using recIDs, and the generated

seed. We propose a tree-based approach for the randomization. Each node generates

a seed value and utilizes it to generate the random IDs. The pair recIDs-randIDs

contains the lists of IDs that define the randomization pattern. The recIDs-randIDs

pairs of the nodes are updated at a regular interval with EMS’s request.

The sub-task of random ID generation for a particular node is done by a recursive

algorithm, Rand-Child, as shown in Algorithm 2, which ensures the uniform dis-

tribution of the deceptive sensors. Rand-Child takes two arguments- the ID of the

node and number of sensors, totDec of the considered child node to be randomized.
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Algorithm 1: randIDGen(nodeX)

1 initialization recIDs, randIDs = [] ;
2 recIDs← nodeX.sensors− nodeX.randomized;
3 randIDs← nodeX.sensors− nodeX.randomized;
4 recIDs.append(nodeX.randomized);
5 for for each child nodeC ∈ nodeX.childs do
6 randIDs.append(Rand-Child(nodeX, nodeC.randomized));

7 Return recIDs, randIDs

Thus, each Rand-Child call for the child nodes in the list childs returns the set of

deceptive IDs for that child. The merged output IDs of these nchilds calls is the set

of random IDs for that node. The same process is performed for all the nodes in the

network other than EMS to generate and store their recIDs-randIDs pair.

Algorithm 2: Rand-Child(nodeX, n)

1 initialization;
2 if nodeX.leaf = True then
3 nodeX.totRem← 0;
4 Return [nodeX.nodeID];

5 for for each child nodeC ∈ nodeX.childs do
6 remSensorsChild append (nodeC.totRem);

7 ndist← wdist(n, remSensorsChild);
8 for each (nodeC, nc) ∈ (nodeX.childs, ndist) do
9 if nc > 0 then

10 randIDs.append(Rand-Child(nodeC, nc));
11 nodeX.update();

12 Return randIDs;

The primary goal of random ID generation is to shuffle the sensors of one child

node as the sensors coming from all the child nodes. Hence, if an adversary attacks

the sensors coming from that child node or a critical part of the system, the injected

malicious data will be distributed to the sensors coming from different child nodes,

which makes the stealthy attacks invalid also keeps the system observable.
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5.1.2 Generation of Subsystem

To support the ID randomization, the nodes add the decoy data for the type-2 sen-

sors. Usually, the nodes are lightweight devices, thus to minimize the computational

overhead in calculating the decoy data, each node creates a virtual sub-system that

spans the sensors reported through that node and the substations where those sen-

sors are located. We define H i as the topology matrix of the i-th subsystem, where

1 2 3 4 5 6 .. m

1 1,1 - - 1,4 - 1,6 - 1,m

2 - - - - - - - -

3 3,1 - - 3,4 - 3,6 - 3,6

4 - - - - - - - -

5 5,1 - - 5,4 - 5,6 - 5,m

6 - - - - - - - -

7 7,1 - - 7,4 - 7,6 - 7,m

8 - - - - - - - -

9 9,1 - - 9,4 - 9,6 - 9,m

.. - - - - - - - -

.. - - - - - - - -

n n,1 - - n,4 - n,6 - n,m

M
ea

su
re

m
en

t 
ID

State/Bus ID

1,1 1,4 1,6 1,m

3,1 3,4 3,6 3,m

5,1 5,4 5,6 5,m

7,1 7,4 7,6 7,m

9,1 9,4 9,6 9,m

n,1 n,4 n,6 n,m

Subsystem’s Topology Matrix, Hi
Original Topology Matrix, H

Sub-system Contains:
Sensors: (1, 3, 5, 7, 9, n) 

Buses: (1, 4, 6, m)

Figure 5.2: Generation of topology matrix of the subsystem.

the rows represent the sensors, and the columns are for the substations. Figure 5.2

shows a case of generating a subsystem’s topology matrix, H i from the system’s full

topology matrix H, where the subsystem contains the sensors 1, 3, 5, 7, and n, which

are located at the substations 1, 4, 6, and m.

5.2 Packet Crafting

This section explains the steps for packet crafting, which has two steps, as discussed

below:
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Algorithm 3: RanID(Irec, recIDs, randIDs, T )

1 initialize Irand = Irec;
2 for i = 1 to len(Irec) do
3 for j = 1 to len(recID) do
4 if Irec[i] = recID[j] and T [i] == 1 then
5 Irand[i] = randIDs[j];
6 break;

5.2.1 Randomizing IDs

During the data acquisition steps, the IDs of type-1 sensors are replaced utilizing the

recIDs-randIDs pair. Algorithm 3 shows the RandID procedure, which replaces

the type-1(random) sensors’ received IDs Irec with deceptive random IDs, Irand.

As the data packets contain randomized IDs, if the attacker is not aware of the

deception, s(he) will be injecting the false data to the deceived locations. Let us

assume that the Iorg = {o1, o2, ...om−1, om} is the original sequence of m IDs for the

measurement data at one layer, where the shuffled IDs Irand = {r1, r2, ...rm−1, rm} are

used with that measurement set. Thus, the probability that Iorg and Irand are exactly

the same is 1
k!

, where k is the number of randomized sensors and k ≤ m. For k = 5 the

probability is 0.008 and k = 10 the probability is 2.75× 10−7. Thus, for a node with

a little higher number of sensors m, such probability converges towards zero. If an

attacker tries to launch a reconnaissance attack, he will end up with different state

estimation. On the other hand, if the attacker launches a targeted active attack,

he/she will be attacking the wrong set of sensors. Usually, an FDI attack vector

contains a critical set of sensors. Due to this randomization, the attacker attacks

sensors with the critical IDs, but they contain the sensors’ measurement data coming

from different parts of the system. Thus, removing those sensors does not create any

issue for the observability of the system. Moreover, the tree-based randomization

29



algorithm ensures that the two pairs will not be the same if the node has more than

one sensor to randomize. Thus, we can assume with high confidence that Iorg 6= Irand.

5.2.2 Adding Decoy Data

ID randomization makes the deception more visible to the attacker as the random

IDs may not follow the topological pattern. Thus, if the adversary runs the SE-

BDD on the deceptive data that only contains the random IDs, the sensors with

the random IDs will become the outliers, and he/she might end up with the actual

state estimation. Thus, to support the random IDs, we propose to add decoy data

for the type-2 (decoyed) sensors, which supports the random IDs to be good data in

the attacker’s state estimation, making the original type-0 (fixed) data outlier.

Algorithm 4: FindDecoy (zfix, zrand, zdec, H, α)

1 initialize the decoy data with the existing data, zdecoy ← zdec;
2 [rfix, rrand, rdecoy] = SE([zfix, zrand, zdecoy], H);
/* run state estimation and amend decoy data */

/* repeat until the decoy data is harmonized */

3 while ||rdecoy|| > α do
4 [rfix, rrand, rdecoy] = SE([zfix, zrand, zdecoy], H);
5 zdecoy ← zdecoy - rdecoy;

6 return zdecoy

Let’s assume that zi (∈ z) is the measurement vector consisting of only the sensors

of i-th node. Thus, we can define zi as [zi
fix, zi

rand, zi
dec], where zi

fix, zi
rand, and zi

dec

contains the fixed, randomized, and decoyed measurement data. Algorithm 6 shows

the technique to calculate the decoy data zi
dec. The procedure takes the sub-system’s

randomized data, topology matrix H i, and a threshold α.
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CHAPTER 6

REMAPPING MECHANISM

As the reported sensor data contain decoy data and randomized IDs, EMS needs

to remap the shuffled measurement data to the original sequence before utilizing

them control decisions. Remapping is exactly the opposite of the deception process.

Depending on the defender’s resource and choice, we present three types of remapping

mechanisms.

6.1 Seed-based Remapping

Like the deception process, it has two parts. Firstly, it generates the ID-Stack and

then remaps the crafted data reported by nodes. The primary features of the seed-

based DDAF are shown in Figure 6.1.

Sensor

Random
IDs

Packet 
Crafter

Node

ID-Stack

Reported
Packets

Remap IDs State Estimation &
Bad Data Detection

Estimated 
States

Residuals/
Outlier

Attack Detection &
Localization

Targeted
Sensors

EMS

Seed

Figure 6.1: Block diagram of seed-based DDAF.
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6.1.1 Building ID-Stack

During the recIDs-randIDs pair generation process as discussed in Section 5.1.1,

EMS also generates the seeds using the nodes’ secret keys. Using the seed values,

EMS regenerates the same recIDs-randIDs pairs that each node has generated and

builds an ID-Stack with all the randomization patterns for different levels and nodes.

EMS can use the ID-Stack to trace back to the original sensor IDs from the reported

deceptive IDs.

During the ID-Stack formation, the recIDs-randIDs pairs of same level nodes

are concatenated vertically, which gives the total view of the deception at that level.

Each level adds additional randomization into the system. recIDs-randIDs pairs of

different levels (i.e., levels 1, 2, 3, etc.) are stacked sequentially so that the height of

the ID-Stack is equal to the size of the network hierarchy. Figure 6.2 shows a sample

ID-Stack for a three-layer hierarchical network. Here, the blue, green, and orange

boxes represent the randIDGen pairs for different nodes at level 1, 2, and 3.
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Figure 6.2: An example ID-Stack.

6.1.2 Remapping IDs

The second and core part of the remapping process is ID remapping that recovers

original IDs from the deceived IDs. First, the crafted packets are collected and de-

coded at the EMS switch. The data packets contain the shuffled sensor IDs, along

with some decoyed data after multiple randomizations. Thus, the first step is to drop
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the packets/data reported with the type-2 sensor IDs. The remaining packets contain

original data but randomized IDs. As the exact recIDs-randIDs are generated in

ID-Stack, multiple remaps of the reported IDs in reverse order of the levels provide

the original IDs associated with the measurement values. We use the same randID

algorithm, but now the shuffling direction is changed. Thus, randIDs are replaced

with the recIDs. In this case, EMS calls the algorithm for all the layers, and the last

call for level 1 returns the original ID sequence of the measurement data.

Algorithm 5: State Estimation and Bad Data Detection
SE −BDD(Hinit, zmsr)

1 H← Hinit;
2 outlier = [];
3 while H has fullrank do
4 estimated states, xest ← (HTH)−1HTzmsr;
5 estimated measurements, zest ← Hxest;
6 estimated residual , rest ← zmsr − zest;
7 if max(|rest|) > rthreshold then
8 i← argmax(|rest|;
9 remove i-th measuremnt from zmsr;

10 outlier.append(i-th ID);
11 update H excluding i-th measurement;

12 else
13 Return xest, zest, r, outlier

14 print(“System unobservable”)

6.1.3 Attack Detection, Mitigation, and Localization

This section explains how the stealthy attacks are detected, mitigated, and localized

after remapping to the original IDs and running the SE-BDD algorithm.

Attack mitigation:

This subsection explains how the SE−BDD algorithm mitigates FDI attacks from

a system executing DDAF. EMS runs the SE−BDD procedure, as shown in Algo-

33



rithm 5, on the remapped data packets. The topology matrix H and measurement

vector zmsr are generated using the original sensors IDs and measurement values,

respectively. The SE−BDD algorithm returns the estimated states, estimated mea-

surements, residual vector, and outlier sensors.

Now, let us assume, there is an attacker trying to inject stealthy data aorg into the

set of sensors Icorg of that node, where aorg = [ao1 , ao2 , ..., aom−1 , aom ]. The attack will

be successful (stealthy) if aorg = Hc, where c is the targeted malicious state. Due

to the randomization, the injection ends up as a randomized attack data, arand into

the sensors Icrand where, arand = [ar1 , ar2 , ..., arm−1 , arm ]. We already show that with

sufficient randomization, Icorg 6= Icrand, thus, aorg 6= arand and arand 6= Hc. Therefore,

the attack loses it stealthiness and with proper randomization, the BDD process at

EMS will find all the compromised sensors as outliers. The process is explained in

the next subsection.

Let us assume, and the original measurement vector is zorg, which is randomized

as zrand at the compromised node. Thus, the attacker injects aorg to the randomized

measurement vector zrand. The compromised measurement vector that EMS receives

is za
rand, where za

rand = zrand + aorg. However, EMS remaps the deceptive IDs Irand

to original IDs Iorg (also Icrand to Icorg) using the ID-Stack. Thus, the compromised

measurement data za
rand also changes to the original sequence as za

org. As remapping

and shuffling are two exact opposite tasks, during this remapping process, the original

injected attack vector gets shuffled from aorg to arand, where, za
org = zorg +arand. Fi-

nally, EMS runs the SE−BDD algorithm on the za
org data that makes the remapped

compromised sensors in the set Icorg outliers as the attack vector, arand 6= Hc.

Moreover, in the case of a ideal noiseless system with sufficient redundancy, as

the compromised sensors in Icorg become outliers and get excluded from the estima-

tion process, the rest of the clean measurement data give an estimated measurement
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Figure 6.3: Block diagram for attack detection and localization.

vector, za
est which is the same as zorg. The residual vector, rorg = za

org − za
est =

za
org − zorg = arand. Thus, the residual vector is actually the randomized version

of the original attack vector aorg. The set of outlier sensors, outorg = Icorg, is the

randomized version of the compromised sensors Icrand.

Attack detection and localization:

Here we explain how the residual/outlier data are used to detect and localize the

attacks. The residual and outlier data are leveraged to detect attacks and reveal

the attacker’s target and location. As discussed in the attack mitigation process,

proper randomization makes all the compromised sensors outlier. The process is

shown in Figure 6.3. If we again randomize the residual vector and the outliers with
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the nodes’ recIDs-randIDs pairs, the randomized residual vector, rrand goes back

to the actual attack vector aorg and the randomized outliers outrand becomes Icrand.

Now, as rrand = aorg = Hc, if we run the SE−BDD algorithm on rrand data, we

get the same estimated attack vector and no outlier. This condition proves that the

deceived residual is not just random system noises but a precisely calculated FDI

attack vector.

However, along with the attacked sensors, if there are some other outliers outnoise

due to random system noise vector n (n 6= Hc), SE−BDD on the residual data

considers outnoise as outliers due to their noncompliance values. Hence, in that case,

the set outsus = outrand - outnoise contains the list of suspected/targeted sensors in

the attack. Similarly, there is a perfect pattern in the sensors’ location in the sensors in

the outsus as an FDI attack vector selects the sensors following a topological pattern

in their locations. DDAF considers all the layers one by one and checks if any layer

provides a pattern in the randomized residual/outlier data to detect the attacker’s

position in the network. If random system noises cause the residuals/outliers, none

of the layers will have a high likelihood.

6.1.4 A 5 Bus Case Study

In this section, we present an example case study explaining the overall process of

DDAF for the IEEE 5 bus system. Figure 6.4 shows the electrical and communication

network on the considered approach. Generally, each transmission line contains two

sensors reporting forward and backward line power flows, and each bus has one sensor

reporting the power consumption. Thus, IEEE 5 bus system consists of 5 substations

(buses), 7 lines and (2× lines+ buses) = 19 measurement sensors in total. The two-

layer hierarchical network has five level-1 nodes at the substations and two level-2

nodes that communicate directly with EMS.
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Figure 6.4: SCADA Network of IEEE 5 bus system.

recIDs− randIDs pairs and ID-Stack generation

Figure 6.5 demonstrates the recIDs-randIDs pair at each node generated by the

randIDGen. Here, substation 1 has three sensors with IDs {1, 2, 15}. Thus, switch S1
1

generates a seed and runs Algorithm 1 to generate the set of random IDs {15, 2, 1},

as shown with the vivid color boxes. Similarly, the rest of the switches follow the
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Figure 6.5: ID-Stack of IEEE 5 Bus System.
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same procedure to generate the deceptive IDs. Thus, the set of all the received and

randomized IDs at level 1 are presented by recIDs1 and randIDs1, respectively.

While randomizing at level 1, all the deceptive IDs are selected within the same

substation as indicated by their colors. Switch S1
1 , S1

2 , and S1
3 forward the packets

to their parent node S2
1 , which is a level 2 switch. Similarly, S1

4 , and S1
5 report their

data to S2
2 . As shown in the figure, the set of received IDs at level 2 switch, S1

2 are

1, 2, 15, 3, 4, 5, 8, 16, 6, 9, 10, 17. The randomized pattern of this received IDs is

1, 3, 17, 2, 4, 8, 9, 10, 15, 5, 16, 6. According to Figure 6.5, the sensors 1, 2, and

15 are reported by S1
1 . However, S2

1 randomizes the pattern as 1, 3, and 17. The

colors imply that these three IDs come from three different substations. Similarly, the

rest of the sensors received from a single child node are distributed to multiple child

nodes. Thus, the randomization at level 2 is more effective than level 1 and so on.

Simultaneously, EMS generates the same seed and runs the randomization algorithm

for each of the nodes to build the complete ID-Stack, as shown in Figure 6.5.

Packet crafting and remapping

As the system executes DDAF, the deceptive sensors’ packets are crafted at the nodes

that belong to its path to the EMS. With the generated recIDs-randIDs pairs, the

received packets are crafted with the deceptive IDs. That means, all the level 1

switches send the original measurement data of sensor {1, 2, 15, 3,...., 18, 12, 14, 19}

with deceptive IDs {15, 2, 1, 16, ...., 11, 19, 12, 14}. Similarly, the level 2 switches

send the received data with sensor IDs {1, 2, 15, 3, ...., 18, 12, 14, 19} with the

deceptive IDs {1, 3, 17, 2,...., 14, 7, 13, 19} and report to EMS. After collecting

the crafted packets, EMS performs the remapping for all the layers in a backward

direction to get back to the original IDs. The remapping starts with the highest layer,
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which is layer 2 in this case, propagates to the first layer, and recovers the original

IDs.

Table 6.1: Attack Scenario for IEEE 5 Bus System for Seed-based Remapping.
Original IDs, Iorg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Original Sensor Data, zorg 83 41 19 29 54 15 5 -83 -41 -19 -29 -54 -15 -5 125 20 -45 -40 -60

Randomized IDs, Irand 17 3 10 9 2 6 14 8 15 16 11 19 12 7 1 4 5 18 13

Actual Attack Vector, aorg 17 4 0 0 0 0 0 -17 -4 0 0 0 0 0 21 -17 -4 0 0

Randomized Attack Vector, arand -4 0 0 -4 4 0 0 -17 21 -17 0 0 0 0 17 0 0 0 0

Remapped Sensor Data, zcorg 79 41 19 25 58 15 5 -100 -20 -36 -29 -54 -15 -5 142 20 -45 -40 -60

Estimated Sensor Data, zest 83 41 19 29 54 15 5 -83 -41 -19 -29 -54 -15 -5 124 20 -44 -39 -59

Residual Vector, rorg -4 0 0 -4 4 0 0 -17 21 -17 0 0 0 0 17 0 0 0 0

Impact of an FDI attack

Let us assume that an intruder launches an FDI attack on the communication path

between layer- 2 and EMS of the IEEE 5 bus system. Table 6.1 demonstrates an

attack, where the original and deceived IDs are shown as Iorg and Irand. The at-

tacker plans to launch the attack by injecting 17, 4, -17, -4, 21, -17, and -4 MW to

the measurement data of sensors in set Icrand which are 1, 2, 8, 9, 15, 16, and 17,

respectively. However, due to deception at node S2
1 , IDs in Icrand are used to send

the original measurement data of sensors in Icorg = {15, 5, 8, 4, 9, 10, 1}. Thus,

whenever the attacker injects into the sensors in Icrand, the injections take place at

the measurement data of sensors in Icorg.

As shown in Table 6.1, zc
org represents the remapped version of the compromised

measurement vector. The estimation process on zc
org makes the compromised sensors

outliers, and only the good measurements prevail. Thus, the estimated measurement

vector zest remains almost the same as the original measurement vector zorg, leaving

no deviation in the state estimation due to the attack. Similarly, the residual vector

rorg follows the pattern of the attack vector arand, revealing the intent of the attack.

The following part shows the detection of the stealthy attack, analyzing the residual

vector and outlier sensors.
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• Analyzing the Residual Vector: EMS inspects rorg and outorg from an

attacker’s point of view at each level, starting from level 1. The shuffled resid-

ual vector rrand and its estimated version for each of the layers are shown in

Figure 6.8. For level 1, the shuffled residual vector does not follow any topo-

logical pattern. Thus the estimated residual becomes almost zero, indicating a

high deviation. On the other hand, for level 2, the estimation perfectly follows

the provided residual vector, and the deviation is almost zero. A low deviation

proves that the shuffled residual vector is not random noises rather a perfectly

synthesized FDI attack vector injected at the communication medium between

level 2 and EMS switches.

• Analyzing the Outliers: Similar to analyzing the residual vector task shown

in the previous subsection, the actual outliers in outorg are shuffled back to

different levels. The shuffled outliers, outrand for level 1 is {1, 3, 5, 6, 8, 10,

15} and the noisy outlier during the residual estimation,outnoise is also {1, 3,

5, 6, 8, 10, 15}. As shown in the residual analyzer part, level-1 does not find

any pattern in the residual vector; it considers all of the sensors with nonzero

residuals as outliers. Thus, the ultimate suspected outliers, outsus is outrand -

outnoise = {}. All the shuffled outliers are random, and there is no suspected

outliers. On the other hand, for level 2, outrand = {1, 2, 8, 9, 15, 16, 17}.

As SE-BDD finds a perfect pattern in the shuffled residual data, noisy outlier

outnoise is {}. In this case, outsus is {1, 2, 8, 9, 15, 16, 17}, which is the same

as outrand. The location of these suspected outliers in the electrical network is

shown in Figure 6.7. Whereas for level 1, there is no suspected sensor, for level

2, we find all the initial outliers as suspects, and they follow a clear topological

pattern in their location.
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Analyzing the suspected sensors’ locations and connectedness, we assign a sim-

ilarity score/probability for each level. Thus, the detection algorithm finds a

high probability that there is an FDI attack at level 2 (after node S2
1 ), and the

attacker intended to compromise sensors 1, 2, 8, 9, 15, 16, and 17.
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Figure 6.6: Distribution of the suspected sensors 1, and 6 for an FDI attack at Level
1, which indicates a lower probability of attack.
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Figure 6.7: Distribution of the suspected sensors 1, 2, 8, 9, 15, 16, and 17 for an FDI
attack at Level 2, which indicates a higher probability of attack.

Impact of random noise

Now, we analyze another case when the outliers occur due to random system noises.

In this case, we inject the same attack vector, which we consider in the previous

case, but at random locations, to mimic the pattern of random noise. The set of

compromised sensors at layer 2 is {3, 4, 7, 9, 14, 16}, which makes the sensors {2, 4,
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Figure 6.9: Residual estimation with random noise, where both the levels shows high
deviations and lower probabilities of FDI attacks.

7, 10, 14, 16} outliers at EMS. Now, we analyze both the residual and outliers data

as before. Figure 6.9 shows both the levels observe high deviations in the residual

estimations. Similarly, as the injections are done randomly, all the sensors with non

zero residual become an outlier and return no suspected sensors for any levels.

6.2 Prediction-based Remapping

Even though the seed-based remapping mechanism can successfully mitigate, detect,

and localize the FDI attacks, it has some limitations. The time synchronization is

mandatory in generating the same seed at the EMS side. Failure to maintain such syn-

chronization can lead to different seed values; thus, different recIDs-randIDs pairs

42



Prediction-based
Remapping Observable?

Impute 
MeasurementNo

   = Yes

SE-BDDLSTM 
Model-based

Prediction

Historical
Measurement

Data

Figure 6.10: Prediction-based remapping mechanism.

are very dangerous for the system. Therefore, we propose a data prediction based

remapping mechanism, where seed sharing is not necessary. However, even though

the remapping mechanism is different, we consider the same deception mechanism as

described in chapter 5.

This section introduces prediction-based remapping, where remapping is done

based on the predicted measurement vector. An LSTM model is trained on the

historical sensor data and used to predict the next measurement vector in real-time

based on the previous historical data. Figure 6.10 shows the process of remapping

using the LSTM’s prediction. In the following sections, we explain different modules

of the prediction-based remapping.

6.2.1 Historical Sensor Data

The time-series sensor data is used to train the LSTM model. The measurement

vector has a dimension of m, where m is the number of sensors in the system. Thus

the dataset has m features representing different sensors.

6.2.2 LSTM Model

We consider a many-to-one LSTM model in this application. In the input of the

LSTM, we provide the past k samples of the measurement vector and predict the
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next set of measurement data. Thus, the LSTM takes an input of m× k dimensional

data and outputs a m × 1 dimensional measurement data. In the input we provide

the measurement data of t− 1, t− 2, t− 3, .... , t− k time step and ask to generate

the data from t. All the last k time steps of data is shows as zhist(t − 1) and the

prediction of the LSTM is expressed as zpre(t) , as shown in Figure 6.10.

6.2.3 Prediction of LSTM

The predicted measurement data zpre(t) contains the expected values for each sensor.

We provide an m × k dimensional measurement data as input to the LSTM’s, and

generate m×1 dimensional data. Therefore, zhist(t−1) = [zest(t−1), zest(t−2), ......

, zest(t−k+1), zest(t−k)]. We train the LSTM model offline using the historical time

series data. The dimension of the LSTM model depends on the considered system’s

topology.

6.2.4 Remapping Mechanism

Due to the deception, the sensor’s measurement is crafted with randomized IDs, and

the reported measurement vector, zrep(t), needs to be reshuffled to get back to the

original pattern. To do this reallocation process, we design an optimization algorithm

to assign the best set of sensors IDs to zrep(t) considering the predicted data zpre(t).

Remapping algorithm

This part explains the repairing algorithm. As we deal with different combinations of

the data, we use mixed integer programming (MIP) to implement the combinatorial

optimization problem. Table 6.2 shows the notations used in defining the constraints.
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Table 6.2: Modeling Parameters of Repairing Algorithm.
Notation Type, Dimension Definition
zpre 1-D Array, np × 1 Set of predicted measurements
np Integer Num of predicted measurements
zrep 1-D Array, ns × 1 Set of reported measurements
nr Integer Num of reported measurements
M 2-D Array, np × ns Recovery mapping matrix
F 2-D Array, np × ns Fixed sensor mapping matrix
D 1-D Array, nr × 1 Decoy mapping array
C 2-D Array, np × ns Recovery cost matrix
OCost

Reco Integer Measurement recovery cost

OProf
Assi Integer Measurement assignment profit

η Integer Recovery threshold

Our goal is to find the (np×nr) dimensional binary matrixM, where the positions

of the ones represent the successful recovery of reported measurements. The rows and

columns of the ones inM represent the IDs of predicted and reported measurement,

respectively. For example, a one in the position (i, j) of M represents that the j-th

reported reading in zrep is the actual measurement of i-th sensor. Thus, the total

number of ones in M indicates the number of recovered measurements.

fixed sensors do not participate in the randomization process during deception.

Their IDs remain the same during the whole process and we explicitly define them

during the repairing process. F is the 2-D binary mapping matrix, where the rows

and columns represent the already known remapping of fixed sensors. On the other

hand, D presents the 1-D binary mapping of the decoyed sensors. As shown in (6.1)

and (6.2), each recovery of the randomized sensor comes with a cost, defines as the

difference between the predicted and the reported value. In the case of a fixed ID,

the cost is explicitly defined as zero. As shown in (6.3), the decoyed measurements

are not assigned to any of the sensors.

∀1,1≤i,j≤ns,nr Fi,j == 0 =⇒ Ci,j == |zi
pre − zj

rep| (6.1)
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∀1,1≤i,j≤ns,nr Fi,j == 1 =⇒ (Mi,j == 1) ∧ (Ci,j == 0) (6.2)

∀1≤j≤nr Dj == 1 =⇒
ns∑
i=1

Mi,j == 0 (6.3)

The recovery data must be within a specific range of the predicted data. Thus,

as shown in (6.4), a recovery is valid only if the associated cost is within η% of the

expected data. However, if there is no such reported value within that range, that

sensor remains unassigned.

∀1≤i,j≤ns,nr Ci,j > | zi
pre × η| =⇒ Mi,j == 0 (6.4)

The constraints in (6.5) mandate that any measurement can be assigned to almost

one sensor and vice-versa.

∀1≤i≤ns

nr∑
j=1

Mi,j ≤ 1 and ∀1≤j≤nr

ns∑
i=1

Mi,j ≤ 1 (6.5)

As shown in (6.7) and (6.8), the ultimate goal is to assign as much measurements as

possible (maximize assignment profit), while keeping the recovery cost to minimum.

This two objective functions are merged together in (6.6). Thus, the optimization

maximizes the assignment profit by allocating as many sensors as possible and mini-

mizes the recovery cost by assigning to the closest prediction. To ensure the maximum

number of recovered sensors, we multiply the assignment profit by k and emphasize

it than the recovery cost. Hence, there will always be a solution; however, no sensor

will be recovered in the worst-case scenario. EMS will rely only on the fixed sensors

to run the state estimation in such a rare case. Thus, it will be useful to select a set

of fixed sensors that spans the system’s critical parts and ensures observability.

OCost
Reco =

ns∑
i=1

nr∑
j=1

Mi,j × Ci,j (6.6)
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OProf
Assi =

ns∑
i=1

nr∑
j=1

Mi,j (6.7)

min (OCost
Reco − k ×O

Prof
Assi ) (6.8)

The successful execution of the program returns the matrixM from where we find

the original pattern of zrep. Let us assume that zrem is the recovered measurement

vector used in SE −BDD. If the system is observable, it finds the state vectors and

takes the necessary control decision. However, if the system is unobservable, we use

an imputation algorithm to fill up the missing data.

6.2.5 Data Imputation

If there is an L-1/L-2 FDI attack in the system, the recovery algorithm can remove

the compromised measurement and may keep the system observable under sufficient

randomization. However, in the case of L-0 attacks, dropping the compromised mea-

surement during the repairing process may lead the system to unobservability. Be-

sides, instead of an FDI attack, there can be a DoS attack, where the attacker’s goal

is to make some targeted critical measurement missing. In both cases, DDAF replaces

the missing data with the predicted measurements from zpre(t).

6.2.6 A 14 Bus Case Study

In this section, we provide a case study of prediction-based remapping in the IEEE

14 bus system [IEEa], as shown in Figure 6.11. For simplicity, we consider a case

where 100% of sensors are reporting measurement data to EMS, and all of them are

considered for randomization.
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Figure 6.11: IEEE 14-bus test system [RASK14].

Remapping under normal condition

Figure 6.12 shows the randomized reported measurement data, sensor-wise predic-

tion, and the recovered data under normal operating conditions. The reported data

contains random IDs; thus, the reported measurement vector’s shape does not fol-

low the predicted points. However, once the repairing algorithm assigns the random

measurement values to the right IDs, the recovered data precisely follow the LSTM’s

predicted data. However, sensors 8, 43, 44, 49, and 53 are not assigned to any mea-

surement as the model cannot find any possible candidate for them. Those sensors

may contain noises that deviate them from the predicted values. However, among 54

measurements, 49 of them are assigned to the right IDs, which is enough to make the

system observable.
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Figure 6.12: Prediction-based remapping mechanism under normal condition, where
almost 91% (49 out of 54) of the randomized sensors are remapping accurately.
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Figure 6.13: Prediction-based remapping mechanism under FDI attack, where the
attacked sensors are omitted during the remapping and keeps the state estimation
resilient to the FDI attacks.

Remapping under an FDI attack

Figure 6.13 shows how prediction-based remapping eliminates the impact of the FDI

attacks. In this case, we consider an FDI attack, where the targeted sensors are 8,

9, 15, 16, 17, 28, 29, 35, 36, 37, 44, 47, 50, and 54. However, due to the deception,

these sensor IDs are used to send the data of 5, 6, 11, 15, 18, 24, 26, 27, 40, 41, 43,

46, 48, and 52, respectively. Hence, even though the attacker expects to be stealthy

and bypass the BDD, the remapping mechanism mitigates the attack by declining

the compromised sensors. Thus, among the attacked sensors 5, 6, 11, 26, 27, 40, 41,

43, and 52 are unassigned due to their suspicious values, which alleviates the impact
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of the FDI attack. Sensors 15, 18, 24, and 48 are not removed as their injection

amounts are very small, within 5% of the predicted values. Further processing on

this measurement data in the state estimation process removes the remaining outliers

and makes the system effectively immune to the attack.
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Figure 6.14: Hybrid remapping mechanism.

6.3 Hybrid Remapping

We provide a hybrid remapping mechanism utilizing both seed-based and prediction-

based approaches. An amalgamation of these two mechanisms provides the best

performance compared with the individual mechanism regarding the accuracy and

robustness of the remapping. Figure 6.14 shows the block diagram of the hybrid
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remapping mechanism. In the following subsections, we discuss different features of

hybrid remapping.

6.3.1 Seed-based Approach

Seed-based remapping is the preferred remapping approach in a hybrid mechanism.

Seed-based remapping is only possible when the ID-Stack is already generated. The

generation process of ID-Stack is already explained in Section 6.1. Once the ID-Stack

is ready, we use the ID-Stack to remap back to the original IDs to the deceptive re-

ported measurement data zrep(t). The remapped measurement data zrem(t) contains

the measurement vector with the original IDs and measurement pairs that is ready

to use in the SE −BDD algorithm. If the SE −BDD mechanism finds the zrem(t)

sufficient to give the system observability, we pass the vector to the filtering data

block to further eliminate compromised sensors.

Filtering Data

This block does a straightforward operation by comparing the measurement data in

zrem(t) and zpre(t) for individual sensors. It does remove any sensor i if the remapped

data is not within the η percentage of the predicted value. The following constraint

formalizes the task of this block.

∀i∈SensorList|zi
rem − zi

pre| > zpre × η =⇒ remove zi
rem from zrem

After filtering the zrem, it only contains the measurement that is remapped to the

original data through ID-Stack and also follows the predicted trend.
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Imputing Data

In case of limited redundancy of the sensors, filtering out a few of them may cre-

ate an unobservability in the system. Besides, any attack on the availability of the

measurements may create a similar unexpected scenario. Thus, to handle the data

unavailability issues, we implement an imputation algorithm that replaces the missing

sensor data with the LSTM’s predicted sensor data to ensure the system’s observ-

ability. The core task of the imputation block is shown in the following:

∀i∈SensorList zi
rem is unavailable =⇒ zi

rem = zi
pre

zfin(t) is the final measurement vector to use in the SE−BDD algorithm. SE−BDD

algorithm is explained in Algorithm5, and the attack detection and mitigation part

are the same as explained in Section 6.1.3.

6.3.2 Prediction-based Approach

In case of losing synchronization with the nodes, EMS may fail to build the ID-Stack.

In such cases, we propose prediction-based remapping as the back-up option. The core

idea of prediction-based remapping is already explained in Section 6.2. The concept

is still the same. The predicted measurement zpre(t) is used to run the remapping

optimization algorithm that reshuffles the zrep(t) and provides the remapped vector

zrem(t). The remaining steps are similar to the seed-based approach. The only

exception is that we do not need to run the filtering block as the optimization by

itself makes sure that the remapped data are within the allowed range of the predicted

values. The only part that might be crucial is data imputation. Optimization does

not consider checking the observability of the system. Thus, in case of such data

unavailability problems, we need to pass the remapped measurement zrem(t) to add
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Algorithm 6: Hybrid Remap(zrep, zpre, ID − Stack)

1 if Id− Stack available then
2 zrem = seed− based− remap(zrep, ID − Stack);
3 else
4 zrem = prediction− based− remap(zrep, zpre);
5 //Checking if the system is observable
6 if zrem observable then
7 zfin = filter − data(zrem);
8 else
9 zfin = impute− data(zrem);

the missing data from the predicted values and finalize zfin(t). Algorithm 6 shows

the pseudo-code of the hybrid remapping process.
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CHAPTER 7

IMPLEMENTATION

This chapter explains the implementation of DDAF in a power grid hierarchical

network. The framework is virtually implemented in Python using Jupyter Note-

book [jup]. We use different libraries and also design numerous functions for the im-

plantation. Moreover, DDAF’s performance is verified with the PowerWorld [Pow21]

simulator.

7.1 Data Pre-processing

To start with implementing DDAF, we consider standard IEEE bus systems as the

test case‘ [ieeb]. The following steps are executed to generate the necessary data for

the implementation.

• Collection and generation of IEEE bus systems’ data using pandas, and NumPy.

• Generation of time series sensor data with OPF using PYPOWER.

• Designing communication network topology and hierarchy.

• Implementing SE-BDD algorithm using pandas, and NumPy.

7.2 Implementing Deception

This part explains the steps for the implementation of deception at the nodes. For

the following steps we use pandas, and NumPy libraries.

• Designing tree-based randomization algorithm using a seed value

• Creating subsystem and generating the topology matrix

• Designing the algorithm for decoy data generator
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7.3 Implementing Remapping

This part explains the steps for the implementation of different remapping mechanism

at EMS.

• Implementing seed at the nodes and sharing the nodes’ secret keys with EMS

using pandas, and NumPy.

• Generation of seeds and creating the ID-Stack using pandas, and NumPy.

• Designing and training the LSTM model with the time-series data using Keras,

TensorFlow, and PyTorch.

• Designing the MIP optimization algorithm using Google OR-Tools

7.4 Implementing Stealthy Attacks

The FDI attack vectors are generated using formal modeling. The entire constraints,

as well as the system configuration, are encoded into SMT [dMB09]. Z3 .Net API [Z3S]

is used for encoding the formalization of the proposed FDI model. The formalization

is mainly encoded using Boolean (i.e., for logical constraints) and Real (e.g., for the

relation between power flows or consumption with states) terms. A text file (input

file) is used to import the system configurations and constraints. As the FDI attacks

consider a critical set of the measurements, launching DoS attacks on these sensors

would make the system unobservable. Thus, we implement DoS attacks considering

the same FDI attacks but instead of injecting malicious data, we consider dropping

the packets.
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CHAPTER 8

EVALUATION

This section evaluates the performance of three different reallocation mechanisms

along with the common deception mechanism. We assess them for the different ma-

trices discussed in the following subsection.

8.1 Evaluation Methodology

We run the evaluation on IEEE 14, 57, 300 bus systems. For each test system, we

generate 250 FDI attack vectors targeting different parts of the system. For the

evaluation, we consider that the attacker can compromise a maximum of five buses

at a time, which is statistically a pragmatic assumption. On average, a bus has a

connectivity degree close to 3 [HBSB10], i.e., it is connected to approximately three

other buses. Thus, it includes around four measurements/sensors [HBSB10]. Hence,

the attacks limited to at most five buses can compromise up to 20 sensors, which is

more than enough to make the system unobservable.

We model a two-layer communication network for each of the systems and evaluate

DDAF’s performance against the attacks at any of these layers, including L-0. Thus,

we assess the robustness of DDAF against three different attacks: i) Reconnaissance,

ii) FDI, and iii) DoS attacks. We also consider each of these attacks in three different

levels: i) L-0, L-1, and L-2. We use the 365 days of synthetic IEEE bus system

time-series data [idd] to train the LSTM model. To evaluate the benefit of the ID

randomization, consider the percentage of randomized sensors from 0% to 100%.

Among the rest of the sensors, 50% are reported with fixed IDs and the rest as decoyed.

An attack can be launched when the control center collects the measurements and

executes control routines. The period of this operation is often several seconds to a
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few minutes [ZDGK10]. We implement data acquisition at 10 seconds intervals and

choose an arbitrary time (i.e., five cycles) to apply different attacks.

8.1.1 Environmental Setup and Methodology

We conduct our experiments on a Dell Precision 7920 Tower workstation with Intel

Xeon Silver 4110 CPU @3.0GHz, 32 GB memory, 4 GB NVIDIA Quadro P1000 GPU.

8.2 Evaluation Metrics

To assess the performance of our proposed framework, we consider the following

evaluation metrics. The evaluation metrics determine the impact of randomization

to deceive the adversaries against data alteration attacks.

Reconnaissance Deviation: It is defined as the l-2 norm of the difference between

the actual and attacker’s estimated measurement vector. A higher deviation indicates

DDAF’s success in misleading the attacker. Considering zorgest , and zdecest as the actual,

and attacker’s estimated measurement vector,

Reconnaissance Deviation = ||zorgest − zdecest ||

Estimation Deviation: It is defined as the l-2 norm of measurement deviation

vector at the defender’s side due to the attacks. Higher estimation deviation indicates

the attacker’s success in misleading the defender’s SE. If zattackest is the defender’s

estimated measurement vector,

EstimationDeviation =
∣∣|zorgest − zattackest

∣∣ |
Percentage of Stealthy Attacks (PSA): We consider an attack to be stealthy if

none of the compromised sensors are detected and eliminated by the BDD during the
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state estimation process. PSA is defined as the percentage of the attack that bypasses

the BDD without creating any alarm.

PSA =
# of stealthy attacks

# of total attacks
× 100

Percentage of Exposed Attacks (PEA): We consider an attack vector to be

exposed if any of the compromised sensors becomes outlier and creates alarm at

BDD. PEA is defined as:

PEA =
# of exposed attacks

# of total attacks
× 100

Percentage of Unobservable Cases (PUC): PUC is defined as the percentage of

attacks that create unobservability in the defender’s estimation. The primary goal of

DoS attacks is to increase the PUC as much as possible. PUC is defined as:

PUC =
# of unobservale cases

# of total attacks
× 100

Compromised Sensor Elimination Rate (CSER): CSER is defined as the per-

centage of compromised sensors detected and eliminated as outliers by the BDD from

all the compromised sensors during an attack. Even though an attack is exposed, it

may impact the state estimation depending on the number of removed compromised

sensors. Thus, a completely stealthy attack has 0% CSER, whereas an exposed attack

has non zero CSER. Only an attack with 100% CSER is exposed and has no impact

on the state estimation. An attack with a CSER between 0 and 100% is considered

exposed but still impacts the state estimation. CSER is expressed as:

CSER =
# of eliminated compromised sensors

# of compromised sensors
× 100

Precision: Precision, also known as the positive predictive value of a model, is an

exactness quality measure metric that expresses the percentage of the data points the

model says was relevant among the relevant data points. [BBR+02].

58



Receiver Operating Characteristic (ROC) Curve: ROC curve is a way of

measuring the performance of classification problems for different thresholds. The

area under the ROC curve (AUC) determines separability measures for distinguishing

among classes [HSG+95].

8.3 Impact of Deception against Reconnaissance Attack

This part shows how DDAF ensures the system’s privacy by randomizing the IDs and

then adding decoy data. In this case, we consider 50% of the sensors as randomized.

For the rest 50% sensors, we study the impact of treating them as decoyed sen-

sors and observe how the attacker’s state estimation gets deviated from the original

estimation Figure 8.1 shows the reconnaissance deviation for different cases.

As decoy data are added in the nodes, not the sensors, in L-0 passive attacks, the

reconnaissance deviation is zero Thus, DDAF fails to hide the system states from the

attacker. Such attacks are highly expensive and infeasible as the attacker needs to

compromise all the sensors individually. A more practical approach for reconnaissance

is to attack the networks (L-1/L-2). In those cases, adding more decoy data increases

the reconnaissance deviation and misleads the attacker. Although DDAF fails to

prevent L-0 passive attacks, the later analysis shows it can completely mitigate the

L-0 active attacks; and thus, such successful passive attacks become ineffective.

8.4 Evaluation of Seed-based Remapping

This section shows the robustness of seed-based remapping against FDI and DoS

attacks. We consider another level as ’Random,’ where the attacks are randomly

implemented one of the levels. We analyze the attack impacts for different amounts
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Figure 8.1: Impacts of decoy data on reconnaissance deviation for different levels.
Reconnaissance deviation increases as more sensors are used to add decoy data sup-
porting the ID randomization. A higher level considers more sensors in the node;
thus, the decoy data become more effective.

(0 to 100%) of sensors used in the deception process, which we define as a percentage

of deception.

8.4.1 Evaluation of FDI Attack Mitigation

We evaluate the performance of our proposed DDAF based on the FDI attack mit-

igation capability. First, we evaluate DDAF’s performance for the 57 bus system,

considering different levels as the attack points. Figure 8.2(a) shows, for L-1 and L-2

FDI attacks, PSA decreases as the percentage of deception increases. Usually, PSA is

higher for level 1 attacks as there are fewer sensors to randomize in each node. Simi-

larly, Figure 8.2(b) shows how the attacks get exposed, and PEA increases with higher

levels and more randomization. However, as there is no active deception at the node

level, seed-based remapping cannot detect/expose L-0 FDI attacks. Figure 8.2(c)

shows the CSER of the attack vectors for different levels. For attacks at level 2 with

90-100% deception, the figure shows that almost all the compromised sensors are

eliminated from the state estimation process. However, for level 1, a maximum of

60% of compromised sensors can be detected and eliminated from the system due to
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Figure 8.2: Performance evaluation of seed-based DDAF for different levels of FDI
attacks, where a) PSA decreases , b) PEA increases, c) CSER increases, and d) PUC
remains the same with increasing randomized sensors.

fewer randomization options. Figure 8.2(d) shows that the tree-based randomization

ensures that none of the FDI attacks takes the system to unobservability, even with

almost 100% CSER. We see from Figure 8.2(a-b) that 50% randomization is sufficient

to make almost all the attack vectors exposed to the BDD. Still, Figure 8.2(c) shows

that it can only eliminate approximately half of the compromised sensors, allowing

the attack to create some deviation in the state estimation. Figure 8.3 shows the

estimation deviation of the attacks at different levels. For level 1 attacks, the devi-

ation decreases slowly with the percentage of deception. For levels 2, the deviation
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Figure 8.3: Estimation deviation of seed-based DDAF for different levels of FDI
attacks, where a higher deception decreases the estimation deviation.

reduces drastically after 50%. Even though there remain a few attacks that create

some deviations in the estimation, in most cases, the deviation becomes very low,

making the attack less effective with more randomization.

8.4.2 Evaluation of FDI Attack Detection, and Localization

In this step, along with the attack vectors, we inject another 250 random noise vectors

and analyze the attack detection and localization performance of DDAF. We skip the

L-0 attacks in this case, as they remain stealthy and cannot be detected by the seed-

based remapping. Figure 8.4(a) shows the ROC curve for attack detection at different

levels. With 100% sensor deception, the AUC for levels 1, 2, and 3 are 0.861, 1.00, and

0.996, respectively. Figure 8.4(b) shows the ROC curve for different randomization

and random level attacks. The figure shows that DDAF shows very high performance

in attack detection with minimum deception. Even 25% randomization can provide

an average AUC of 0.88.

Figure 8.4(c) shows the confusion matrix of detected levels at which the attack

happens. Among 250 attacks at level 1, 203 are identified correctly as level 1 attacks.

However, for levels 2 and 3, the model predicts with 99% and 100% accuracy, respec-
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Figure 8.4: Performance evaluation of seed-based DDAF on attack detection, and
localization for different levels of FDI attacks. a-b) attack detection, c) attack levels,
and d) suspected sensors.

tively. Figure 8.4(d) shows the precision of the prediction on the suspected sensors’

IDs for different levels of attacks and deception. The figure shows DDAF has very

high precision in predicting the location of the targeted sensors.

8.4.3 Evaluation of DoS Attack Mitigation

Figure 8.5 shows seed-based DDAF’s robustness against of DoS attacks. As the

figure shows, in the case of the L-0 DoS attack, PUC remains 100% regardless of the
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percentage of deception. Thus, seed-based DDAF fails to secure the system against

DoS attacks at the sensor level. However, for network-level attacks, PUC decreases

with higher deception, and for L-2 attack, it can be even almost zero.
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Figure 8.5: Performance evaluation of seed-based DDAF for different levels of DoS
attacks, where PUC decreases with higher deception.
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Figure 8.6: Performance of DDAF on percentage of reported data.

8.4.4 Evaluation on Percentage of Reported Data

In the earlier evaluations, we consider that all the sensors are reporting to the EMS.

However, in this part, we evaluate the framework’s performance for different amounts
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of sensors reporting to the EMS. Figure 8.6 shows under DDAF; only 70-80% sensors

are sufficient to observe a substantial performance in PSA, PEA, and CSER and

attack detection. More sensors participating in the data acquisition make it harder

for the attacker to bypass the BDD.

8.4.5 Evaluation of Scalability

In this part, we analyze the impact of the network size on DDAF’s performance.

To evaluate the framework’s scalability, we implement and analyze it on different

systems to show that the framework is not system-specific and compatible with any

dimensions. We consider the scalability from two perspectives.

Performance of the framework

We analyze the framework’s performance on attack detection and mitigation for IEEE

14, 57, and 300 buses. Figure 8.7 (a-c) show the PSA, CSER, and ROC curve for

attack detection for the three systems under 100% deception and random level attack.

Similarly, it is evident from figures that irrespective of the network size, the framework

shows high performance in attack detection/mitigation.

Time Complexity of the Framework

We analyze the time needed for the deception process and the reallocation process

for each of the networks. Figure 8.7(d) shows the framework’s time complexity for

those two tasks. The figure demonstrates a linear relationship between the time

complexity and the network size, proving that the framework is highly scalable and

generic enough to be implemented for any hierarchical network size.
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Figure 8.7: Scalability analysis of DDAF for different models. a) PSA, b) CSER c)
attack detection, and d) running time (seconds) show DDAF is scalable for different
test cases.

8.5 Evaluation of Prediction-based Remapping

This section shows the robustness of prediction-based remapping against FDI and

DoS attacks.

8.5.1 Evaluation on FDI Attack Mitigation

We evaluate the performance of the prediction-based DDAF on the FDI attack mitiga-

tion capability. Figure 8.8(a) shows that PSA decreases as the percentage of deception
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Figure 8.8: Performance evaluation of prediction-based DDAF for different levels of
FDI attacks, where a) PSA decreases , b) PEA increases, c) CSER increases, and d)
PUC remains the same with increasing randomized sensors.

increases at the same rate for all levels of FDI attacks. Similarly, Figure 8.8(b) shows

that PEA increases drastically at the same rate for all the levels. Again, Figure 8.8(c)

shows the CSER of the attack vectors for different levels, which can be almost 75%.

Here, the remaining 25% compromised sensors contain low injection and are within

the threshold α; thus, they are not eliminated during the remapping process. Fig-

ure 8.8(d) shows, the tree-based randomization ensures that none of the FDI attacks

makes the system unobservable. Figure 8.9 shows the estimation deviation due to

the FDI attacks at different levels decreases similarly with the percentage of decep-
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Figure 8.9: Estimation deviation of prediction-based DDAF for different levels of FDI
attacks, where a higher deception and levels decrease the estimation deviation.

tion. Thus, the evaluation shows that, whereas the seed-based remapping failed to

defend against the L-0 attacks, prediction-based remapping can successfully tackle

such attacks with high accuracy.

The optimization algorithm takes 0.025, 0.175, 0.456, and 2.87 seconds on our

computer to remap all the sensors of 14, 30, 57, and 118 bus systems. For a powerful

server, this time will be much shorter. Moreover, for large-scale power systems,

EMS can split the remapping problem into several subproblems for each child node’s

reported and predicted data. The subproblems can run parallelly, and the combined

solution reveals the overall remapping pattern.

8.5.2 Evaluation of DoS Attack Mitigation

Figure 8.10 shows prediction-based DDAF’s robustness against of DoS attacks. As the

figure shows, in the case of DoS attacks, PUC remains 0% regardless of the percentage

of deception and attack levels. Even though the seed-based remapping fails to secure

the system against DoS attacks at the sensor level, prediction-based remapping can

successfully mitigate such DoS attacks.
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Figure 8.10: Performance evaluation of prediction-based DDAF for different levels of
DoS attacks, where PUC remains zero for different deceptions.

Even if many measurements are missing but LSTM is precise enough in predict-

ing them, there will be almost no impact on the state estimation for a short time

attack. In the case of a continuous attack on some specific sensors, LSTM’s predic-

tion error will have a cascading effect (add up) on the state estimation. However,

frequent updates on the sensor sets/groups and the randomization patterns will de-

viate the attack in another direction. Thus, the effect on a specific state variable

will be mitigated. Whereas attacks can have an immediate impact on the existing

approaches, our proposed framework will slow down the attack impact, providing the

system operator more time to take defensive actions in the case of suspicious events.

8.6 Evaluation of Hybrid Remapping

This section shows the robustness of hybrid remapping against FDI and DoS attacks.
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Figure 8.11: Measurement deviations for different sensors only with seed-based remap-
ping under FDI attacks at a) Level 1, and b) Level 2.

8.6.1 Performance Evaluation of Hybrid Remapping

This section provides the evaluation of the hybrid remapping mechanism on the IEEE

57 bus system. Firstly, we analyze the impacts of FDI attacks on the system with

only seed-based remapping. Later we use hybrid remapping with data filtering and

data imputation to compare how these add-on features make the system more stable

and robust. In this case, we implement FDI attacks every 5 seconds and considers

75% of sensors active in the system.

System only with Seed-based Remap

Figure 8.11 shows the sensor-wise estimation deviations of seed-based remapping due

to consecutive FDI attacks on different parts of the system and levels. Figure 8.11(a)

illustrates that the system is most vulnerable against Level 1 attacks, where the

sensors are lightly randomized. Thus, due to limited randomization, the attacks
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remain within the system and create significant measurement deviation, even with

100% deception. On the other hand, Figure 8.11(b) shows, the system performs

better against level 2 attacks; however, still, there are a lot of spikes in the estimation

deviation.

System with Hybrid Remap
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Figure 8.12: Measurement deviations for different sensors only hybrid remapping
under FDI attacks at a) Level 1, and b) Level 2

This part analyzes the same scenarios with the hybrid remapping mechanism,

equipped with data imputation and predictive filtering. Figure 8.12 shows the mea-

surement deviation due to the FDI attacks, which illustrates that a hybrid remapping

mechanism with a predictive filter is highly robust against stealthy FDI attacks, where

the seed-based mechanism shows poor performance (Figure 8.11). The predictive fil-

tering eradicates almost all the compromised sensors even with 75% randomization.
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8.6.2 Evaluation on FDI Attack Mitigation
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Figure 8.13: Performance evaluation of hybrid DDAF for different levels of FDI at-
tacks, where a) PSA decreases , b) PEA increases, c) CSER increases, and d) PUC
remains the same with increasing randomized sensors.

Figure 8.13(a) shows, for all levels of FDI attacks, PSA decreases as the percentage

of deception increases at the same rate. Similarly, Figure 8.13(b) shows, for all

the levels, PEA increases drastically at the same rate. Similarly, Figure 8.13(c)

shows the CSER of the attack vectors for different levels, which can be almost 90%.

Figure 8.13(d) shows, the tree-based randomization ensures that none of the FDI

attacks makes the system unobservable. Figure 8.14 shows the estimation deviation

due to the FDI attacks at different levels decreases similarly with the percentage of
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Figure 8.14: Estimation deviation of hybrid DDAF for different levels of FDI attacks,
where a higher deception and levels decrease the estimation deviation.

deception. Thus, the evaluation shows, whereas the seed-based remapping failed to

provide the defense against the L-0 attacks, hybrid remapping can successfully tackle

such attacks with high accuracy.
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Figure 8.15: Performance evaluation of hybrid DDAF for different levels of DoS at-
tacks, where PUC remains zero for different deceptions.

8.6.3 Evaluation of DoS Attack Mitigation

Figure 8.15 shows prediction-based DDAF’s robustness against of DoS attacks. As

the figure shows, in the case of DoS attacks, PUC remains 0% regardless of the
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percentage of deception and attack levels. Even though the seed-based remapping

fails to secure the system against DoS attacks at the sensor level, hybrid remapping

can successfully mitigate such DoS attacks.

Figure 8.16: Performance comparison of different remapping mechanisms.

8.7 Performance Comparison of Remapping Mechanisms

This subsection summarizes the comparative study of the resilience of different remap-

ping strategies. Figure 8.16 shows the effectiveness of the remapping mechanisms

against three types of attacks. The defense of reconnaissance attacks only depends

on the successful deception, not the remapping. During the evaluation process, the

deception mechanism is considered the same for all three remappings. Thus, the

figure illustrates that the robustness against such passive attack improves with the

levels. As there is no active deception at the sensors, DDAF does not have any defense

against L-0 passive attacks.

For the same reason, the seed-based remapping performs the worst for L-0 active

attacks. However, it shows moderate performance in detection, mitigation, and local-

ization of any types of L-1 FDI attacks, and the best for L-2 FDI attacks. Similarly,

it shows a similar performance in the mitigation of DoS attacks.
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On the other hand, prediction-based remapping can entirely mitigate any types

(FDI/DoS) of active attacks. However, it cannot detect or localize the FDI attacks;

it depends on the knowledge of the nodes’ randomization pattern, which is not shared

with EMS in the case of prediction-based remapping.

Lastly, the hybrid remapping not only mitigates the active attacks, but it can

also detect and localize the attack points as it possesses all the features of the seed-

based and prediction-based remapping. As the detection and localization performance

depends on the mitigation’s success, the hybrid remapping utilizes the residuals and

the nodes’ randomization patterns to detect and localize the FDI attacks accurately.
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CHAPTER 9

CONCLUDING REMARKS AND FUTURE WORK

9.1 Summary

CPSs are evolving dramatically, connecting different technologies around the world

of different domains. Besides, extensive implementation of 5G will make the system

almost real-time. Such dependency creates huge attack space that an attacker can

exploit to achieve his/her goals. Moreover, a few SCADA-based control systems’

time-constrained operations make it difficult for the nodes to implement a high-level

encryption mechanism, as they have limited computational abilities. A few existing

works considered deception as defense, but none could provide a complete solution

against different cyberattacks.

This thesis proposes DDAF, a generic deceptive defense-based secure data acqui-

sition framework for CPSs hierarchical communication networks, ensuring the CIA

(confidentiality, integrity, and availability) triad for the sensor data. Using SDN con-

trollers at the network nodes, DDAF can deceive an attacker by replacing the original

sensor IDs with the deceptive IDs and adding intelligently crafted decoy data. Such

deception allows EMS to detect, mitigate, and localize the stealthy cyberattacks such

as FDI attacks, DoS attacks, and reconnaissance attacks. Initially, we propose two

types of unique remapping mechanisms, where each has special features with a few

limitations. Finally, we merge them to present a hybrid remapping, highly resilient

against both the local sensor-level attacks and the network-level attacks. Experimen-

tal results on standard IEEE power systems show that the framework can detect,

mitigate, and locate most stealthy cyberattacks with high accuracy. Besides, the

framework is highly scalable, which can be implemented for large scale networks.
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9.2 Future Work

The future works contain the following subs-tasks:

Evaluation for different CPSs and cyberattacks: We implemented DDAF

on the power grid network; however, it can be implemented on any CPSs network that

incorporates networked control systems. Thus, in future work, we plan to evaluate

DDAF’s performance on other CPSs, i.e., water treatment plants, oil and gas systems,

manufacturing plant systems, mass transit systems, etc. This thesis considers three

types of attacks (e.g., FDI, DoS, and reconnaissance) in the evaluation; however, we

will study the robustness of the framework under other emerging, impactful, and

zero-day cyberattacks.

Test-bed implementation: The current implementation is limited to the sim-

ulation only. Therefore, we will implement the framework on a real test-bed in the

future, developed for the power system implementing both the physical network and

the communication network. Besides, we will study the overhead and latency due to

the deception at the nodes by implementing the framework in a network simulator or

on real SDN controllers. We plan to implement the communication network in NS3

and verify the results on real SDN controller devices.

Optimization of SDN controller placement: Moreover, most of the legacy

CPSs may not have the capability to support the SDN application at all the network

nodes. On the other hand, upgrading the whole system may not be a feasible solution

considering the associated cost and benefit. Thus, in the future, we will study the

optimal placement of the SDN controller (upgrading the nodes), which will maximize

the resiliency with minimum cost. We will also develop a tool to design the optimal

network architecture for any CPSs that will provide the best defense running with

DDAF.
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