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Vehicle-to-Everything (V2X) communication enables vehicles to communicate with other vehicles and roadside infrastructure,
enhancing traffic management and improving road safety. However, the open and decentralized nature of V2X networks
exposes them to various security threats, especially misbehaviors, necessitating a robust misbehavior detection system (MBDS).
While machine learning (ML) has proved effective in different anomaly detection applications, the existing ML-based MBDSs
have shown limitations in generalizing due to the dynamic nature of V2X and insufficient and imbalanced training data.
Moreover, they are known to be vulnerable to adversarial ML attacks. On the other hand, generative adversarial networks
(GAN) possess the potential to mitigate the aforementioned issues and improve detection performance by synthesizing unseen
samples of minority classes and utilizing them during their model training. Therefore, we propose the first application of
GAN to design an MBDS that detects any misbehavior and ensures robustness against adversarial perturbation.

In this paper, we present several key contributions. First, we propose an advanced threat model for stealthy V2Xmisbehavior
where the attacker can transmit malicious data and mask it using adversarial attacks to avoid detection by ML-based
MBDS. We formulate two categories of adversarial attacks against the anomaly-based MBDS. Later, in the pursuit of a
generalized and robust GAN-based MBDS, we train and evaluate a diverse set of Wasserstein GAN (WGAN) models and
present Vehicular GAN (VehiGAN), an ensemble of multiple top-performing WGANs, which transcends the limitations
of individual models and improves detection performance. We present a physics-guided data preprocessing technique that
generates effective features for ML-based MBDS. In the evaluation, we leverage the state-of-the-art V2X attack simulation
tool VASP to create a comprehensive dataset of V2X messages with diverse misbehaviors. Evaluation results show that in
20 out of 35 misbehaviors, VehiGAN outperforms the baseline and exhibits comparable detection performance in other
scenarios. Particularly, VehiGAN excels in detecting advanced misbehaviors that manipulate multiple fields in V2X messages
simultaneously, replicating unique maneuvers. Moreover, VehiGAN provides approximately 92% improvement in false positive
rate under powerful adaptive adversarial attacks, and possesses intrinsic robustness against other adversarial attacks that
target the false negative rate. Finally, we make the data and code available for reproducibility and future benchmarking,
available at https://github.com/shahriar0651/VehiGAN.
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CCS Concepts: • Networks → Mobile and wireless security; • Security and privacy → Intrusion detection systems; •
Computing methodologies → Neural networks.

Additional Key Words and Phrases: Vehicular Network, Misbehavior Detection Systems, Generative Adversarial Networks,
Deep learning, Adversarial Attacks

1 INTRODUCTION
Road traffic accidents take 1.35 million lives every year around the world, leaving another 50 million non-fatally

injured [35]. Approximately 94% of major accidents in conventional transportation systems are caused, at least in
part, by human errors [47]. Conversely, a cooperative intelligent traffic system (C-ITS) has the potential to help
reduce these human errors and save millions of lives. One of the fundamental enabling technologies of C-ITS
is Vehicle-to-Everything (V2X) communication that allows vehicles to communicate with their environment,
such as other vehicles (V2V), infrastructure (V2I), networks (V2N), and pedestrians (V2P) [32]. V2X technology
provides vehicles with real-time traffic information along with alerts on potential hazards, which help coordinate
traffic flow, avoid collisions, and reduce fatalities and injuries on the roads.
Moreover, V2X can also augment safe, efficient, and convenient autonomous driving systems. By V2X com-

munication protocols, connected vehicles transmit Basic Safety Messages (BSMs) (also known as Cooperative
Awareness Messages (CAM) in the European Union), as defined in the SAE J2735 standard [9]. A BSM primarily
contains a short-term pseudonym for sender identification, current location, speed, acceleration, direction, etc.,
and is generally transmitted every 100 milliseconds. A security credential management system (SCMS) incorpo-
rates a public key infrastructure (PKI) to deliver digital certificates to the vehicles that serve as a signature for the
exchanged messages [8]. Such a cryptographic solution secures V2X by thwarting any outsider attackers from
sending bogus messages.
While V2X has the potential to boost C-ITS and is secure against an outsider attacker, it still poses several

security challenges [23], especially from insider attackers. Insider attackers have valid access credentials but
disseminate incorrect information to achieve attack goals [33]. Hence, while digital signatures confirm the origin
of the BSMs, they cannot ensure the truthfulness of the content. Such malicious actions by rogue insiders, referred
to as “misbehaviors” in V2X, are hard to detect through cryptographic methods and can seriously threaten
road safety. On the other hand, a misbehavior detection system (MBDS) continuously checks for such potential
misbehavior by analyzing the transmitted messages, serving as an essential defense for the V2X communication
system [23].
The MBDS, usually running on an ego vehicle, receives BSMs from another vehicle and checks whether the

content has anomalies or is physically implausible [23]. Upon observing a potential anomaly, it reports such an
event with its evidence to the misbehavior authority (MA), another component of SCMS, following a misbehavior
reporting protocol (MBR) [23]. Such reporting allows the MA to further investigate and penalize the malicious
vehicle, if needed, by putting its credentials on the certificates revocation list (CRL) to isolate it from the V2X
network [8].

Nevertheless, MBDS confronts a multitude of formidable challenges [7], rendering it a complex and evolving
research task. There are different MBDSs proposed in the existing research [7] to detect malicious or erroneous
V2X messages. While the state-of-the-art threat landscape has become quite broad [3], mandating a comprehen-
sive solution, most of the existing MBDSs provide a partial defense, focusing on specific types of attacks and
features [23]. Although traditional supervised deep learning (DL) models have the capability to learn complex
V2X data distribution and detect misbehaviors, they struggle to generalize well due to the lack of sufficient and
imbalanced training datasets [36]. On the other hand, generative adversarial networks (GAN) [16], a generative
DL model, has already demonstrated its capacity to overcome data imbalance issues by synthesizing unseen
benign samples of minority classes (such as rare vehicular states) and incorporating them into the training
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process [44]. Consequently, GAN can effectively identify zero-day attacks by capturing subtle deviations from
benign behavior. Besides, the traditional DL-based methods—classification or anomaly detection—are proven
vulnerable to adversarial ML attacks [24], where noise-like perturbations are added to mislead the model’s
prediction. Unlike traditional MBDS, GAN’s training through implicit density estimation makes it intrinsically
robust against adversarial attacks. Thus, by utilizing both the generative and discriminative powers along with a
powerful learning technique, GAN possesses the potential to serve as an effective anomaly detection system [21].
To the best of our knowledge, we are the first to explore the adaptability of GAN in designing a generalized and
robust MBDS for V2X.

Our contributions are as follows1:
• We outlined an enhanced threat model for stealthy V2X misbehavior, in which the attacker induces a
malicious BSM field and employs adversarial ML attacks to conceal it, thereby evading detection by ML-
based MBDS. To investigate the robustness against adversarial adaptive attackers, we further formulate
two categories of attacks targeting the GAN-based MBDS.

• We study the feasibility of usingWasserstein GAN (WGAN), one of the most prominent and stable variants
of the GANs [4], to design an unsupervised DL-based MBDS for V2X communication. To overcome the
limitations of the individual WGAN, we propose VehiGAN, an ensemble of multiple top-performing
WGANs that provides enhanced detection performance across misbehaviors and robustness against
adversarial attacks. We introduce two distinct techniques for selecting top-performing WGANs for
ensemble and address the unique challenges associated with each approach. We present a physics-guided
data preprocessing technique for the V2X dataset that generates effective features from raw BSM fields
for any ML-based MBDS.

• Employing the state-of-the-art V2X attack simulation tool VASP [3], we generate an extensive V2X
message dataset containing 68 distinct types of misbehaviors, representing a substantial enhancement
compared to prior V2X misbehavior datasets [29, 55]. We make them publicly available [42] to advance
state-of-the-art MBDS research.

• We evaluate VehiGAN against 35 different types of misbehaviors (as the other 33 misbehaviors do not fit
our threat model), and compare the performance with various anomaly detection techniques. The results
indicate that VehiGAN achieves the best detection performance in 20 out of 35 misbehaviors, particularly
against advanced ones that manipulate multiple fields in V2X messages, replicating unique maneuvers,
with a comparable high performance against the rest.

• To investigate the adversarial robustness, we consider a spectrum of adversarial scenarios, ranging
from white-box to black-box settings and from single-model to multi-model attacks. VehiGAN shows
approximately 92% improvement in false positive rate under one type of powerful adaptive attack and
intrinsic robustness against other types of attacks that aim for high false negatives.

The paper is organized as follows: Section 2 provides background information, followed by the problem
formulation and threat model in Section 3. In Section 4, we detail the design of our proposed system, VehiGAN.
Section 5 describes the experimental setup and implementation, and Section 6 presents our evaluation results.
Related work is discussed in Section 7, discussion is in Section 8, and finally, we conclude in Section 9.

2 PRELIMINARIES
This section provides the necessary background on C-ITS, V2X communication, and GANs, which serve as

foundational components for the development of VehiGAN.

1A preliminary version of this research was presented at the IEEE International Conference on Distributed Computing Systems (ICDCS)
2024 [43]
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Fig. 1. V2X communication systems where the ego vehicle collectsF consecutive BMSs for each vehicle and analyzes them
using the MBDS to check for potential misbehavior. MBDS detects the malicious messages transmitted by vehicle 3 (shown
in red color) and reports that to MA through the roadside unit.

2.1 Cooperative Intelligent Transport Systems (C-ITS)
Cooperative Intelligent Transport Systems (C-ITS) utilize wireless technology to enable real-time communica-

tion between vehicles and infrastructure [7]. This connectivity facilitates enhanced coordination among road
users, leading to safer and more efficient traffic flows.

2.1.1 V2X Communication. V2X communication is a fundamental technology of C-ITS that enables vehicles to
communicate with other vehicles (V2V), infrastructure (V2I), and road users, such as pedestrians and cyclists
(V2P) [7]. By facilitating this exchange of information, V2X enhances situational awareness, supports advanced
driver assistance systems, and contributes to safer and more efficient transportation systems. A key component
of V2X is the basic safety message (BSM), which is a standardized data packet broadcasted by vehicles to share
critical safety information, such as speed, position, acceleration, brake status, etc., with nearby vehicles and
infrastructure. V2X safety applications can enhance driver awareness and prevent accidents by providing timely
alerts in critical scenarios [53]. For instance, emergency electronic brake lights (EEBL) notify drivers of sudden
braking in traffic ahead, allowing them more time to respond to potential hazards. Forward collision warning
(FCW) helps avoid rear-end crashes by alerting drivers to immediate threats in front. Similarly, such applications,
including intersection movement assist (IMA), left turn assist (LTA), blind spot/lane change warning (BSW/LCW),
etc., can improve road safety by giving drivers more time to make informed decisions in high-risk situations.

2.1.2 V2X Vulnerabilities. V2X communication, while enhancing safety and situational awareness, is particularly
vulnerable to attacks from insider threats—malicious actors within the V2X network who possess valid creden-
tials [33]. These insiders can exploit V2X protocols and data to disrupt traffic flow and create hazardous conditions.
Misbehavior in the context of V2X refers to any action that deviates from expected behavior. A misbehaving
entity – either intentionally or unintentionally – manipulates and transmits data improperly or inappropriately,
resulting in unexpected behavior [7] Misbehavior can stem from malicious intent, such as targeting any of the
V2X safety applications of other entities and misleading them to an unsafe driving condition. To counter such
threats, an MBDS is essential. An MBDS monitors V2X data to identify suspicious or anomalous patterns indicative
of misbehavior. By filtering out potentially harmful information from malicious insiders, MBDS strengthens the
integrity and reliability of V2X communication, helping to maintain safety across the V2X ecosystem. Fig. 1
illustrates a V2X application scenario with MBDS running on the ego vehicle.

2.2 Generative Adversarial Networks
GAN, introduced by Ian Goodfellow in 2014 [16], is an implicit generative model based on artificial neural

networks. It has become a popular technique for generating realistic data (e.g., image, video, audio) that resembles
the distribution of the training dataset. GAN consists of two neural networks: a generator G and a discriminator
D. The generator’s role is to transform a random noise vector z drawn from a simple distribution (%I) into
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fake-but-realistic data samples x5 0:4 = G(z). The discriminator, on the other hand, is tasked with distinguishing
between real sample xA40; from the training data distribution (%A ) and generated fake data sample x5 0:4 . While G
is trained to deceive D into accepting the fake data as real, D is optimized to discriminate both the real and fake
samples correctly. Hence, when both networks are sufficiently trained, D can be used as an anomaly detection
model to discriminate between benign and malicious inputs [44].
Out of different variants of GAN, we adopted Wasserstein GAN (WGAN) with gradient penalty, which is

the most popular due to its high performance, robustness, and training stability [19]. WGAN solves a min-max
optimization problem, where G is trained to minimize the Wasserstein distance between the real and fake data
samples, and D is trained to maximize such distance. The objective of WGAN is to find the parameters of the
generator (\G) and the discriminator (\D ) that satisfy a Nash equilibrium [16]. Mathematically, the optimization
problem can be expressed as:

min
\G

max
\D

[
EG∼%A [D(x)] − EI∼%I [D(G(z))]

]
(1)

Here, D(GA40; ) and D(G(I)) = D(G 5 0:4 ) are the outputs of the discriminator on a real and a generated sample,
GA40; and G 5 0:4 , respectively. Thus, G and D learn together in an adversarial training fashion, making them
efficient in their individual tasks. From one perspective, with the help of G, D implicitly learns the complex
distribution of the benign (real) data distribution, making it a good candidate for an anomaly-based MBDS [58].
As a GAN model consists of two components—G and D—its evaluation involves assessing each component

individually using distinct metrics. Below, we present different ways for evaluating G and D.

2.2.1 Evaluation of Generator. As the G outputs synthetic/fake data samples, its performance is evaluated based
on the resemblance of the generated data to the real training data. There are different methods to evaluate the
quality of the = fake samples X5 0:4 = {x1

5 0:4
, x2

5 0:4
, x3

5 0:4
, . . . , x=

5 0:4
} by comparing them with the set of = real

samples XA40; = {x1
A40;

, x2
A40;

, x3
A40;

, . . . , x=
A40;

}.
Distance-based Evaluation. Converting real and synthetic data samples into two multivariate datasets by

concatenating them sequentially is a common practice for evaluating generative models. Let the concatenated
matrices are expressed as X2>=20C

A40;
= [x1

A40;
x2
A40;

· · · x=
A40;

]) and X2>=20C
5 0:4

= [x1
5 0:4

x2
5 0:4

· · · x=
5 0:4

]) . Distance-
based evaluation metrics assess the statistical relation between the distributions of X2>=20C

A40;
and X2>=20C

5 0:4
. By

analyzing the distributions, correlations, and summary statistics, such methods estimate how closely the generated
samples resemble those of the real data, which eventually indicates the generator’s performance. However, they
do not consider the temporal characteristics of the time-series data.
Model-based Evaluation. ML models work under the assumption that the training and the testing data come

from the same distribution. Such fundamental assumption is used to evaluate the generator’s performance by
training a model (such as an autoencoder [26]) using one dataset (either XA40; or X5 0:4 ) and then testing it on the
other dataset. The discrepancy between the model’s performance on training and testing datasets indicates how
similar the generated and real data are and, therefore, how well the generator performs. Such methods retain
both the temporal and spatial properties of the data and, hence, are more suitable for time-series datasets.

Computer Vision-based Evaluation. Such methods are almost similar to the distance-based methods. However,
instead of comparing the individual samples directly, these metrics first use a pre-trained inception model [51]
trained on a real-world image dataset (e.g., ImageNet [10]), to extract representative features. Let � be the feature
extractor based on the inception model, and such methods use different distance-based similarity metrics to
estimate how close the feature distributions �A40; = � (XA40; ) and �5 0:4 = � (X5 0:4 ) are, indicating the performance
of the generator.
2.2.2 Evaluation of Discriminator. Unlike Vanilla GANs [16], the D in a WGAN is designed to output higher
values for benign inputs. In this work, we use the negative of the discriminator’s output as the anomaly score.
Thus, let A be a generalized anomaly-based misbehavior detection process so that:
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Misbehaving
Vehicle

Benign
Vehicles

Benign
Vehicles

Steps for Crafting Stealthy Malicious BSM

Fig. 2. Process for generating adversarially stealthy malicious Basic Safety Messages (BSMs) by an insider attacker in V2X
communication. In Step 1, malicious data is introduced into specific BSM fields, and in Step 2, adversarial perturbations are
applied to conceal these malicious modifications.

A(.) = −D(.) (2)
We then apply a thresholding strategy, commonly used in anomaly detection, to classify samples based on their
anomaly scores, thereby evaluating the performance of the discriminator. The metrics used to evaluate both the
G and D in each category are detailed in Section 5.3.

2.3 Adversarial Attacks
Adversarial examples are inputs that are deliberately perturbed to remain indistinguishable to humans but are

designed to cause misclassification in an ML model. These perturbations, often in the form of carefully crafted
“noise”, exploit vulnerabilities in the model’s decision-making process. The Fast Gradient Sign Method (FGSM) is
a fundamental adversarial attack technique to deceive DL models [17], initially designed for classification models.
Mathematically, FGSM perturbs an input data point (x) by adding a small perturbation (n) in the direction of
the sign of the gradient of the model’s loss (L) with respect to the input. The objective is to maximize the loss,
leading to misclassification by the model. The FGSM attack against a classification model can be expressed as:

xadv = x + n · sign(∇GL(M(x), ~)) (3)
Here, xadv represents the adversarial example, M(x) is the classification model’s prediction on input x, ~ is the
actual label, ∇GL denotes the gradient of the model’s loss with respect to the x and n controls the magnitude of
the perturbation.
Anomaly detectors, primarily based on unsupervised DL techniques, assign anomaly scores to data points

based on their deviation from normal patterns. Hence, FGSM can be extended to generate adversarial examples
for anomaly detectors, focusing on manipulating the anomaly scores output by these models [28]. The FGSM
attack against an anomaly detection model can be expressed as:

xadv = x ± n · sign(∇GA(x)) (4)
Here A(x) is the anomaly detection model’s prediction on input, which indicates the anomaly score. The goal is
to manipulate (increase/decrease) the anomaly score, potentially leading to misclassifications by causing normal
instances to be mislabeled as anomalies or vice versa. In Section 3, we extend and elaborate these adversarial
attacks to GAN-based MBDS.

3 PROBLEM FORMULATION AND THREAT MODEL
We formulate the design of a robust misbehavior detection problem considering an advanced adversary that

can craft malicious BSM fields and fine-tune that malicious data by adding a noise-like perturbation to remain
stealthy from being detected. This section further formalizes the generation steps for adversarially stealthy
misbehavior, explains the threat model, and finally, the defense objectives.
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Table 1. Attack matrix with attack type and targeted fields.

Attack Type Value(s) of targeted field(s) Targeted Field(s)
Position Speed Acceleration Heading Yaw Rate Heading & Yaw Rate

Random Random value 1 5 11 17 24 30
Random Offset Value with random offset 2 6 12 18 25 31

Constant Constant value 3 7 13 19 26 32
Constant Offset Value with constant offset 4 8 14 20 27 33

High Significantly high value 9 15 28 34

Low Significantly low value 10 16 29 35

Opposite Opposite to the original heading 21
Perpendicular Perpendicular to the original heading 22

Rotating Rotating heading over time 23

Attacker

Target 1

Actual
Position

Transmitted
Position

Target 2

Rear Collusion
Warning

Forward Collusion
Warning

(a) An illustration of random position attack.

Attacker

Merging Right
Speed: 55

Heading: +1.0
Yaw Rate: +1.0

Going Straight
Speed: 55
Heading: 0
Yaw Rate: 0

Going Straight
Speed: 55
Heading: 0
Yaw Rate: 0

Merge Collusion Warning

Target 1

Actual
Position

Transmitted
Position

(b) An illustration of high heading & yaw rate attack

Fig. 3. An illustration of two types of misbehaviors with diverse intentions in V2X space. In (a), while going straight, the
attacker vehicle transmits fake random positions to influence the decision of nearby benign target vehicles. In (b), the attacker
vehicle transmits fake high heading & yaw rate to stage a potential right turn and, thus, a collision scenario with the target.

3.1 Attack Goals: Adversarially Stealthy Misbehavior
Fig. 2 shows the two steps of generating adversarially stealthy malicious BSMs by an insider attacker. The

attacker has two primary objectives, which are executed in the following two consecutive steps.

3.1.1 Inducing Misbehavior in BSM Data. The attacker’s primary goal is to alter the original BSM data, x>A6 =
[G1>A6, G2>A6, G3>A6, . . . , G

5
>A6], which includes key 5 different telematic fields such as location, speed, acceleration,

direction, etc.This enables the attacker tomislead other vehicles or infrastructure nodes, potentially creating unsafe
conditions. To achieve this, the attacker injects a malicious perturbation x<0; = [XG1

<0;
, XG2

<0;
, XG3

<0;
, . . . , XG

5

<0;
]

into the original data, leading to a malicious BMS containing x<0; = x>A6 + x<0; . Here each element (XG8
<0;

)
depends on the type of attacks and represents the degree of malicious modification applied to field 8 , where
(XG8

<0;
= 0) indicates that field 8 is not targeted by the attacker and remains in its original state.

Table 1 summarizes the overall threat landscape outlining various attack types and possible functions to
calculate Xx<0; , targeted field(s), and the description of the value transmitted in the targeted field(s). The circle ·
indicates the target field(s) of each type of attack, and the number within it denotes the attack index. For example,
in the case of a “Random” attack, the attacker can transmit random values for either position, speed, acceleration,
etc. (as illustrated in Fig. 3(a)). However, in the Rotating attack, the attacker only targets the heading as it is the
only field that can have meaningful values indicating a rotation. We name each attack based on the attack type
and targeted field(s). For example, a RandomPosition attack transmits random values in the fields of positional
fields; RotatingHeading transmits heading data demonstrating that the vehicle is rotating over time.

ACM Trans. Cyber-Phys. Syst.

 



8 • Shahriar et al.

We assume that to keep attack complexity low, most of the attacks
(
1 − 29

)
only compromise a single targeted

field, such as position, speed, acceleration, heading, or yaw rate, and do not account for the change on the other
correlated non-targeted fields. Furthermore, we consider a set of advanced attacks

(
30 − 35

)
when the attacker

compromises both the heading & yaw rate, as illustrated in Fig. 3(b), and modifies these two fields together,
coherently, following their inter-dependency. We use this threat matrix in Section 5.1 to generate a misbehavior
dataset and evaluate VehiGAN’s performance.

3.1.2 Evasion of Detection Mechanisms. The attacker also aims to evade existing ML-based MBDS by masking
the malicious changes in the BSM fields by adding further adversarial perturbation to the data calculated in the
previous steps. Here, adversaries can generate adversarial input by making subtle adjustments to any/all of the
BSM fields, following the patterns outlined by the specific attack algorithms. Let us assume that the adversarial
perturbation G03E = [XG1

03E
, XG2

03E
, XG3

03E
, . . . , XG

5

03E
] with much smaller in magnitude than the malicious one

(‖ΔG03E ‖ � ‖G<0; ‖), is designed to mimic the patterns of random noise with negligible strengths but has the
potential to change the decision of the ML-based MBDS.Thus, the final attacked telematics data vector transmitted
becomes x03E = x>A6 + G<0; + G03E . Here, the low magnitude of ‖ΔG03E ‖ ensures that x03E still preserves the
malicious properties and the adversarial perturbation is just working as a mask for the attack. While adversarial
attack algorithms were initially developed for classification-based models [24], there have been very few efforts to
extend these techniques to anomaly detection models [28]. Moreover, to date, there is a lack of research targeting
adversarial attacks against the discriminators of Wasserstein GANs (WGANs) or in the context of V2X MBDS.
Given that there are eventually two possible outcomes from the discriminators — benign or anomaly — we
categorize the adversarial attacks against any MBDS into two types:

Adversarial False Positive (AFP) Attack. An APF attack on MBDS involves manipulating a benign (original)
input to deceive the model into outputting an anomaly score high enough to be flagged as a misbehavior (false
positive). An AFP attack happens when Δx<0; = 0 and thus, the adversarial perturbation Δx��%

03E
, is added directly

to x>A6 and calculated using the gradient that maximizes the anomaly score. Thus, the adversarial input under
AFP attacks x��%

03E
= x>A6 + Δx��%

03E
and combining (4) and (2), we get the following:

x��%
03E

= x>A6 + n · sign(∇GA(x>A6)) & x��%
03E

= x>A6 − n · sign(∇GD(x>A6)) (5)

Under the AFP attacks, the attacker crafts an adversarial input x��%
03E

by applying a small, targeted perturbation to
the original input x>A6. The attacker’s goal is to maximize the anomaly score A(x>A6) or minimize the output of
the discriminator D(x>A6), thereby increasing the likelihood of it being flagged as an anomaly. The goal of the
AFP attacks is to increase the FP rates, thereby flooding the system with false alarms, potentially overwhelming
the MBDS and creating a denial-of-service condition.

Adversarial False Negative (AFN) Attack. On the other hand, an AFN attack involves manipulating a misbehavior
(positive) input to deceive the model into outputting an anomaly score low enough to be determined as a benign
(false negative) one. An AFN attack occurs when Δx<0; ≠ 0, resulting in the adversarial input under AFN attack
as x��#

03E
= x<0; + Δx��#

03E
. This can be expressed as:

x��#
03E

= x<0; − n · sign(∇GA(x<0; )) & x��#
03E

= x<0; + n · sign(∇GD(x<0; )) (6)

The attacker aims to reduce the anomaly score A(x<0; ) or maximize the output of the discriminator D(x<0; ),
making the malicious input appear benign. This subtle modification reduces the likelihood of the input being
flagged as an anomaly by shifting it closer to the distribution of normal data. In summary, the primary objective of
AFN attacks is to raise the FN rate, thereby masking malicious alterations and enabling the attacker to successfully
transmit misbehaving data without detection.
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Fig. 4. Workflow of VehiGAN, which has two phases of operation: i) development and ii) deployment phase.

3.2 Attackers Capabilities
We focus on the insider and active attackers within the V2X network who are authenticated members with

legitimate cryptographic credentials and actively engaged in malicious actions, as considered in [3, 33]. To fulfill
their objectives, the attacker further possesses the following capabilities:

• Payload Modification. They are local parties who can capture, modify, and transmit the payload of BSMs
by accessing the data from the sensors and changing the targeted fields before transmission.

• Knowledge of MBDS. Based on the extent of access/knowledge of the MBDS, we categorize the adversarial
attacks in two types, namely, white-box and black-box attacks [57]. In white-box adversarial attacks,
the attacker possesses complete knowledge of the detection mechanism, as well as the parameters and
gradients of all the WGAN model(s) employed. In black-box attacks, adversaries lack direct access to the
model’s parameters and gradients. Hence, they employ transfer attacks, generating adversarial samples
using a surrogate WGAN model and deploying them against the target model(s).

• Precise Synchronization and Timing Control. The attacker can synchronize the application of Δx<0; and
Δx03E with the BSM data transmission intervals of 100<B , ensuring that the data alterations remain
consistent with the V2X system’s timing expectations.

3.3 Defense Goal and Capabilities
The defender has two objectives: i) detect any misbehavior by analyzing BSMs, and ii) remain robust against

adversarial perturbations. We assume that the defender has no information on what type of misbehavior and
type of adversarial attacks the attacker is utilizing to achieve their goals. Further, the defender has a training
dataset S1B<

CA08== {X1B<
CA08=, ~

1B<
CA08=} that contains benign BSMs, i.e., ~1B<CA08= = {0}, from normal driving events, which

the defender utilizes to train the MBDS. Moreover, the defender possesses a small validation dataset S1B<
E0;83

=

{X1B<
E0;83

, ~1B<
E0;83

}, and we consider two types of defenders based on the type of validation dataset. One type of
defender possesses S1B<

E0;83
that contains both benign and malicious BMSs , i.e., ~1B<

E0;83
= {0, 1}, to pre-evaluate the

trained MBDS. Other defenders lack access to malicious data and consider only benign BSMs as S1B<
E0;83

, where
~1B<
E0;83

= {0}. Alternatively, they may use S1B<
E0;83

as a subset of S1B<
CA08= for preliminary evaluation. In the following

section, we show how we design an MBDS that achieves both objectives for each defender type.
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4 VEHIGAN: GAN-BASED MBDS
This section first describes an overview of the VehiGAN architecture, followed by the details of each part.

4.1 VehiGAN Overview
Fig. 4 shows the workflow of VehiGAN, its two phases (development and deployment), and its different

components. The development phase has five core tasks: i) collecting V2X data, ii) feature engineering, iii) WGAN
training, iv) pre-evaluating WGANs, and v) selecting top WGAN candidates. The deployment phase has similar
tasks, but instead of WGAN training, it deploys a subset of candidate WGAN models for ensembling, runs
the inference on the collected data, and takes action based on the output. The central element of VehiGAN
is a software system designed to gather and analyze BSMs from nearby vehicles in near real-time. It can be
implemented both in the onboard units (OBU) of the individual ego vehicles for self-defense or in the roadside
units (RSU) by local authorities.
Development Phase. The top panel of Fig. 4 shows the development phase of VehiGAN. In the first step,

VehiGAN collects BSMs from trusted participating vehicles. Such trusted participant vehicles can be pre-selected
by the V2X authority to ensure the reliability of the collected data for future MBDS training. On the other hand,
there are traffic simulators, such as Veins [50], that can generate BSMs resembling real-world traffic mobility.
Once sufficient data is collected to generalize the traffic behaviors and mobility, VehiGAN initiates the feature
engineering tasks. VehiGAN extracts new features from the transmitted raw fields from the BSMs and extends
the dataset by combining all the features altogether, effectively creating multi-dimensional time-series telematics
data.

There exists an inherent complexity in finding the optimal architecture of any DLmodel, and the most prevailing
approach is to perform a grid search. VehiGAN employs the same strategy and trains different WGAN models
with varying architectures and hyperparameters on the combined dataset. After training all the models, VehiGAN
starts pre-evaluating the performance of the WGAN models using a validation dataset. If the validation dataset
contains only benign traces, the pre-evaluation happens by evaluating the generators on the WGANs; otherwise,
the dataset contains some attack traces as well, and then the discriminator is directly evaluated instead. After the
pre-evaluation, instead of selecting the single best-performing discriminator for MBDS, VehiGAN shortlists the
top-performing< candidate discriminators for the ensemble during the deployment phase. Finally, VehiGAN
calculates the anomaly scores threshold for each of the top< discriminators using the validation dataset, which
will be used during the deployment phase.

Deployment Phase. The bottom panel of Fig. 4 shows the deployment phase of VehiGAN, which is completely
executed locally on the OBU/RSU. Similar to the development phase, VehiGAN keeps collecting raw BSMs from
individual testing vehicles, runs the feature engineering task, and creates an effective representation. Later,
instead of using all the< top-performing discriminators, VehiGAN randomly selects : discriminators, where
: ≤ < from the< top candidates and ensembles them for misbehavior detection. We define such detector as
VehiGAN:

< that predicts the misbehavior scores with different random : discriminator every time. If the anomaly
score for any vehicle surpasses a predetermined threshold, which is the average threshold of the deployed :
discriminator, VehiGAN reports that to MA as potential misbehavior. The following subsections explain the
details of each part of VehiGAN in each phase.

4.2 Collecting Raw V2X Data
Throughout both the training and deployment phases, VehiGAN gathers BSMs from nearby vehicles. VehiGAN

places particular emphasis on BSM’s core features that are important for the V2X applications. VehiGAN
categorizes the entire dataset into multiple groups based on the vehicle id, E , where each of these groups contains
continuous time series data for a specific vehicle. Whereas VehiGAN keeps all BMSs of individual vehicles in the
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Table 2. Feature engineering to extract highly correlated features from the raw features.

Type Raw Feats Decomposed Features Relation Delta Features
X Comp Y Comp X Comp Y Comp X Comp Y Comp

Position G , ~ G ~ − − ΔG = G (C + 1) − G (C) Δ~ = ~ (C + 1) − ~ (C)
Speed v EG = v × 2>B (\ ) E~ = v × B8=(\ ) ΔG = EG × ΔC Δ~ = E~ × ΔC ΔEG = EG (C + 1) − EG (C) ΔE~ = E~ (C + 1) − E~ (C)
Acceleration a 0G = a × 2>B (\ ) 0~ = a × B8=(\ ) ΔEG = 0G × ΔC ΔE~ = 0~ × ΔC − −
Heading \ \G = 1 × 2>B (\ ) \~ = 1 × B8=(\ ) − − Δ\G = \G (C + 1) − \G (C) Δ\~ = \~ (C + 1) − \~ (C)
Yaw Rate l lG = l × 2>B (\ ) l~ = l × B8=(\ ) Δ\G = lG × ΔC Δ\~ = l~ × ΔC − −

development phase, it keeps only the latest messages that are sufficient to run the inference in the deployment
phase. Before engaging in training or running inference with the raw features, VehiGAN performs essential
feature engineering, as detailed in the subsequent section.

4.3 Feature Engineering
VehiGAN leverages domain expertise related to classical physics to conduct vector decomposition of raw

features to extract new correlated features. For instance, when considering the scalar values of speed and
acceleration, there is no direct correlation. However, upon vector decomposition into their respective - and
. components, it becomes evident that changes in speed exhibit a high correlation with acceleration for each
component. This feature extraction capability empowers VehiGAN to create consistent, new features from
raw data attributes, ultimately facilitating the development of a robust MBDS. Table 2 provides an overview of
how VehiGAN performs vector decomposition into - and . components, represented by subscripts (G ) and (~),
respectively, for various raw features. VehiGAN further computes the changes between them in the consecutive
time steps, defined as delta (Δ) features. The table illustrates the interrelationships among the extracted features
and delta features. The combined features, that need to be secured, may contain both the raw and extracted
features (as illustrated in Fig. 4). However, the current implementation of VehiGAN only considers the extracted
features as combined features for the defense, which can be easily extended by adding more raw features.

To train the WGAN models, VehiGAN takes the pre-selected core feature set � as {ΔG,Δ~, EG , E~,
ΔEG ,ΔE~, 0G , 0~,Δ\G ,Δ\~,FG ,F~} and generates numerous 2D snapshots x1B<E ∈ RF×5 from the time series data
of vehicle E . This is achieved using a moving window of size F , and the length of the selected feature set is
5 . These snapshots are aggregated to form the training dataset X1B<

CA08= ∈ R=×F×5 , where = represents the total
number of snapshots across all vehicular groups. Fig. 5 shows such steps of generating X1B<

CA08= from consecutive
BSMs. Such snapshots encapsulate both temporal patterns of various vehicles and feature-wise relationships.
On the other hand, to create testing data to check for MBDS using the trained and ensembled WGAN models,
VehiGAN only keeps a single 2D snapshot x1B<E ∈ RF×5 of time series data from the most recent F BSMs for
every vehicle E . Every time a new message comes from the vehicle E , its corresponding x1B<E gets updated.

4.4 Model Training
To find the best-performing WGAN models, VehiGAN explores a wide range of model architectures and

hyperparameters. Each configuration is designed to experiment with different hyperparameters and architectural
choices for both G andD models. For every configuration, VehiGAN initializes the models with slightly different
architectures and sets their respective hyperparameters, such as training epochs, to find potential candidates for
the best models. To adapt the WGAN model to the multi-dimensional time series data, we use a 2D convolutional
neural network (CNN) in both G and D. While G converts a 1D noise vector z ∈ R3 into a 2D snapshots
xfake ∈ RF×5 , D takes the real or fake snapshots xreal or xfake ∈ RF×5 as inputs and outputs a scalar value that
represents the likelihood of the input being real. Upon completing the training on -1B<

CA08= , VehiGAN stores model
checkpoints and relevant training statistics for further processing.
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Fig. 5. Steps for creating a dataset for V2X MBDS: Consecutive BSM features are extracted and represented as 2D images,
with the MBDS dataset forming as a series of these images over time.

4.5 Model Pre-evaluation and Selection
To determine the top<WGANmodels as the candidate for the ensemble, VehiGAN runs the pre-evaluation on

a validation dataset S1B<
E0;83

= {X1B<
E0;83

, ~1B<
E0;83

}. Based on the attacker’s capabilities on the validation dataset S1B<
E0;83

,
we consider two following approaches:

4.5.1 Generator-based Pre-evaluation and Selection. If S1B<
E0;83

contains only benign traces (i.e., ~1B<
E0;83

= 0 for
all samples), where it may even be a subset of the training dataset S1B<

CA08= (i.e., S1B<
E0;83

⊆ S1B<
CA08=), the defender

cannot directly evaluate the performance of the discriminators but rather evaluate the generators and select
the discriminators that are trained with the< top-performing generators. We define this process as generator-
based model selection. As the generator and discriminator are trained together, we hypothesize that there could
be a correlation between their performances in their individual tasks. For the pre-evaluation, each G is used
to synthesize representative fake snapshots X1B<

5 0:4
= {x1

5 0:4
, x2

5 0:4
, · · · x=

5 0:4
} while the same amount of real

snapshots X1B<
A40;

= {x1
A40;

, x2
A40;

, · · · , x=
A40;

} ⊆ X1B<
E0;83

is sampled from the validation dataset. Later, we calculate the
discrepancy between X1B<

A40;
and X1B<

5 0:4
using any suitable metrics (as defined in Section 2.2 and 5.3), and consider

that as that generative score (�() of that G. A lower �( indicates less distance between the two distributions
and, hence, more realistic fake data. Therefore, the top< WGAN models with the lowest �( are selected for the
ensemble model, and the ensemble model is defined as G-based VehiGAN:

< .

4.5.2 Discriminator-based Selection. On the other hand, when S1B<
E0;83

contains both benign and representative
attack traces, i.e., ~1B<CA08= = {0, 1}, where 0 represents benign traces and 1 represents attack traces, the defender
can directly evaluate the discriminators and select the top< candidate ones. We define discriminative score (�()
as the average detection score of D over all the samples in the validation dataset. The �( can be any commonly
used metrics used to evaluate a classifier, such as AUROC, AUPRC, etc. (explained in Section 5.3). A higher
score indicates that a certain D is more likely to be effective against any unseen misbehavior in the test data.
Consequently, the top< WGAN models with the highest �( are selected as the candidates for the ensemble
model, and the ensemble model is defined as D-based VehiGAN:

< .

4.6 Threshold Selection and Attack Detection
As the discriminator of a WGAN is designed to output higher values for benign inputs, we take the negative of

that value as an anomaly score to generalize the misbehavior detection process. Hence, the benign anomaly scores
of any model on all the snapshots in X1B<

CA08= are calculated as a8 = −D8 (X1B<
CA08=). The detection threshold g8 for each

of the individual discriminators is calculated based on the ?-th percentile of that benign anomaly sore a8 where ?
is a system parameter (usually 99 to 99.99). Although there are< candidate discriminators, VehiGAN constructs
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the final ensemble detector during inference by randomly selecting : discriminators from the< candidates and
averaging their anomaly scores to obtain the final anomaly score. Thus, the ensemble discriminator Dens (.) is
defined as:

Dens (.) =
1
:

∑
8∈C

D8 (.) where C ⊂ {1, . . . ,<} and |C| = :. (7)

Here C is a subset of < candidates containing exactly : elements. Similarly, the detection threshold is also
dynamically calculated as g4=B = 1

:

∑
8∈C g8 using the same set C. Thus, during the deployment phase, the anomaly

score of the most recentF BSMs transmitted by the target vehicle E is calculated using 0E = −D4=B (x1B<E ), and the
detection threshold g4=B is used to check if vehicle E is misbehaving. A value of aE > g4=B indicates the existence
of misbehavior, and VehiGAN immediately creates an MBR on vehicle E , including the corresponding BSMs, and
sends it to the MA.
The benefits of selecting : ≤ < are twofold. It reduces the computational overhead to (< − :/<) times with

negligible performance drops. Second, selecting : random Ds in every inference increases uncertainty, which
hardens the generation of adversarial samples.

5 IMPLEMENTATION

5.1 Dataset
We implement VehiGAN on the V2Xmisbehavior dataset simulated using VASP [3], an open-source framework.

VASP allows the simulation of diverse types of V2X attacks and works as a sub-module for Veins[50], a well-
established open-source framework for running vehicular network simulations. Veins further runs on an event-
based network simulator OMNeT++[56], and road traffic simulator SUMO [30]. We ran a VASP simulation on the
Boston traffic network for 3,000 simulated seconds to collect benign traces without any attacks. Such simulation
provided us with 1, 018, 098 benign BSMs from 475 different vehicles. Similarly, we ran another VASP simulation
for 1360 simulated seconds to collect malicious traces with 68 distinct attacks, out of which we used 35 of them
for our evaluation, resulting in a dataset of 2, 641, 309 BSMs. It is noted that the remaining 33 attacks fall outside
the scope of our threat model. Nonetheless, we have published the complete dataset, titled MisbehaviorX [42],
to facilitate future research endeavors. We consider 25% of the vehicles to be malicious during each simulation.
While running the attack, we selected the attack policy as persistent, where the attacker vehicle always transmits
attack messages. In the evaluation, we create the 2D snapshots for the evaluation of VehiGAN by considering
approximately 1 sec of telematics or 10 consecutive BSMs, hence a sliding window sizeF as 10, and a number of
features 5 as 12 as listed in Fig 5.

5.2 Model Architecture.
We train a diverse set of WGAN models based on predefined hyperparameters, carefully selecting them to

balance model complexity and training efficiency. Specifically, we vary the noise vector dimension I across {8,
16, 32, 48, 64} to explore its impact on the quality and diversity of generated samples, with larger dimensions
providing richer latent representations at the cost of increased computational demand. The number of layers in
G and D networks is varied within {6, 7, 8}, allowing us to assess the trade-off between model expressiveness
and overfitting risks. Additionally, we train models for {25, 50, 75, 100} epochs to examine convergence behavior
and mitigate under- or overfitting. This approach results in a total of 60 WGAN model checkpoints, enabling a
comprehensive evaluation of architectural choices. During training, we set a batch size of 128 and a learning rate
of 1 × 10−3. In G’s 2D up-sampling layers and D’s 2D convolution layers, we use 2x2 filters with the LeakyReLU
activation function, enhancing model stability and performance.
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5.3 Evaluation Metrics
We consider the following metrics for G and D to evaluate the individual WGAN models as well as VehiGAN.

5.3.1 Evaluation Metrics for the Generator. We outlined various types of evaluation metrics for assessing the
performance of the G in Section 2.2.1. Below, we define different metrics used within their respective categories.
Distribution-based Evaluation. We consider the following distribution-based evaluation metrics. Maximum

Mean Discrepancy (MMD) [6, 18] uses a kernel-based approach and measures the difference between two
distributions by comparing their mean embeddings in a high-dimensional space. Fréchet Distance (FD) [11]
compares two distributions by calculating the distance between their mean and covariance matrices. Kolmogorov-
Smirnov (KS) Test [15, 48] shows whether two distributions are the same by measuring the maximum difference
between their cumulative distribution functions. Anderson-Darling (AD) test [2] assesses whether multiple
samples come from the same distribution, placing additional weight on the tails of the distributions. On the
other hand, the earth mover distance (EMD) [38] measures the minimum cost to transform one distribution into
another, which captures differences in both shape and location without relying on kernel functions.

Model-based Evaluation. We consider the following model-based evaluation metrics. Train on Synthetic, Test
on Real (TSTR) [14] evaluates the quality of synthetic data by training a model on synthetic data and then testing
it on real data. The model’s performance on real data indicates the coverage of the synthetic data compared to
the real data. Contrarily, Train on Real, Test on Synthetic (TRTS) [14] considers training a model on real data
and testing it on synthetic data, where testing performance indicates whether the synthetic data falls within
the distribution of the real data. In both cases, we train an autoencoder model and consider the mean absolute
reconstruction error as the performance metric.

Computer Vision-based Evaluation. We consider the following computer vision-based evaluation metrics that
use Inception V3 [52] to extract the 64-dimensional feature vector. Later, Fréchet Inception Distance (FID) [25]
uses the Fréchet distance to compare the Gaussian-based means and covariances of feature distributions from
real and generated data. On the other hand, Kernel Inception Distance (KID) [5] uses MMD with a polynomial
kernel to compare feature distributions without assuming Gaussianity.

5.3.2 Evaluation Metrics for the Discriminator. The discriminator can produce four distinct outcomes. True
Positive (TP) and True Negative (TN) occur when the model accurately predicts an input as misbehavior and
benign behavior, respectively. On the other hand, False Positive (FP) and False Negative (FN) happen when
the model incorrectly predicts an input as misbehavior and benign behavior. We evaluate the discriminator’s
performance based on these outcomes using the following metrics:

• True Positive Rate (TPR) is the proportion of total positive instances correctly identified as positives
( )%
)%+�# ).

• False Positive Rate (FPR) is the proportion of negative instances incorrectly identified as positives ( �%
�%+)# ).

• False Negative Rate (FNR) is the proportion of positive instances incorrectly identified as negatives
( �#
)%+�# ).

• ROC Curve indicates the classifiers performance with varying discrimination threshold [22]. The ROC
curve plots TPRs and FPRs for different thresholds. The area under the ROC curve (AUROC) indicates the
robustness of the detectors against both benign and misbehavior instances.

5.4 Baseline Models
To compare the performance of VehiGAN with the existing baselines, we consider the following anomaly

detection methods:
5.4.1 Linear Models for Outlier Detection. Such models assume that the normal data points in the dataset can be
well-described by linear relationships, and outliers are data points that significantly deviate from this linearity.

ACM Trans. Cyber-Phys. Syst.

 



VehiGAN : GAN for Adversarially Robust V2X MBDS • 15

0 5 10 15 20 25 30 35
Attack Index

0.0
0.2
0.4
0.6
0.8
1.0

AU
RO

C

Upper-bound
window=10, layers=5, noise dim=16, epoch=50

window=10, layers=4, noise dim=64, epoch=75
window=10, layers=4, noise dim=64, epoch=50

Fig. 6. Performance of all the WGAN models (as shown by different colors), including the top three ones (highlighted),
against individual attacks. Different WGAN models perform differently against the same attack, indicating no single WGAN
can achieve stable and robust performance.

For instance, Principal Component Analysis (PCA) uses the sum of weighted projected distances to the eigenvector
hyperplane as the outlier scores [46].

5.4.2 Proximity-based Outlier Detection. Such methods, also known as distance-based outlier detection models,
assume outliers are significantly different (far) from the benign data points in the dataset. For instance, k-Nearest
Neighbors (KNN) assigns each data point an outlier score based on the distance to its k-nearest neighbors [37].

5.4.3 Probabilistic Models for Outlier Detection. Such methods model the data distribution and assess the
likelihood of each data point under that distribution with the assumption that outliers are generated from a less
probable distribution. For example, Gaussian Mixture Models (GMM) is a probabilistic model where outliers have
a low probability of being generated by any of the mixtures of several Gaussian distributions [27].

5.4.4 DL Models for Outlier Detection. DL models are well-suited for identifying stealthy and complex anomalies
within large datasets by learning intricate data distributions. While our proposed system, VehiGAN, belongs to
this category, we also use CNN-based Autoencoders (AE) as DL baselines for comparison in this study [26]. AEs
are neural network architectures commonly employed for tasks such as anomaly detection, where they learn
to reconstruct input data and flag poorly reconstructed data points as outliers. In this study, we train the AE
baseline on raw feature data, referring to this model as BaseAE.
Moreover, to show the contribution of the featured engineering of VehiGAN, we also evaluate all the base-

lines on the VehiGAN extracted features and name them with the prefix Vehi- as mentioned in Table 3.
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Fig. 7. Average AUROC of VehiGAN:
< , where < ≥ 5 with

: ≥ <
2 leads to higher AUROC scores.

6 RESULTS
We evaluate the effectiveness of VehiGAN from

different perspectives. First, we analyze the misbehav-
ior detection performance of both individual WGAN
(VehiGAN1

1) and ensemble-based VehiGAN:
< with :

deployed models out of< candidate ones against dif-
ferent misbehaviors. For the VehiGAN:

< model, we
start with D-based model selection and later contrast
it with the performance with G-based model selection.
Later, we conduct an extensive robustness analysis
of VehiGAN:

< against different adversarial attack set-
tings. Finally, we compare the performance of two
representative VehiGAN:

< models with other baseline
models, which is followed by a scalability analysis.
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6.1 Misbehavior Detection
6.1.1 Performance of Single WGAN-based VehiGAN1

1. Fig. 6 provides a comprehensive assessment of all the 60
trained WGAN instances, particularly the discriminators with respect to the AUROC scores, against all the 35
attacks considered in the evaluation. Here, different color indicates different discriminators for which we skipped
the legend as there are 60 of them. However, we highlight the AUROC scores for the top three discriminators that
provided the highest average AUROC scores, along with the upper bound, the maximum achievable performance
by any individual discriminators, across attacks. According to the figure, different discriminators performed
differently against the same attack. Even the top three discriminators, despite having the highest AUROC scores,
failed to detect certain attacks effectively. This implies that it is challenging to train a single WGANmodel capable
of providing a comprehensive solution to all types of misbehaviors.

6.1.2 Performance of Ensemble-based VehiGAN:
< .

D-based Model Selection. We now evaluate an ensemble-based VehiGAN:
< to check if combining the top-

performing WGAN models harnesses the strengths of each model while mitigating their weaknesses. Fig. 7 shows
the impact of< and : on the average AUROC scores against all the 35 attacks in the ensemble-based VehiGAN:

< .
We observe that adding more discriminators (higher< and :) mostly leads to higher AUROC scores. However,
the benefits of adding more discriminators for VehiGAN tend to plateau after a certain point (< ≥ 5), indicating
that a small number of discriminators, typically 5 to 6, are enough to provide decent AUROC scores. We also
notice that : does not necessarily need to be equal to<; even : > <

2 leads to consistently elevated AUROC
scores.

G-based Model Selection. This part evaluates the G-based model selection for considering various metrics for
�( . First, we study the correlation between �( and �( to find the best metric for �( (one with the strongest
correlation), and then use that metric in the model selection. Fig. 8(a) shows the absolute values of the correlation
coefficients of different �( metrics with �( (calculated using AUROC). It is evident that )()' demonstrates
the strongest correlation (≈ 0.25), making it the preferred choice for G-based model selection. Other metrics
exhibit negligible correlations, rendering them ineffective. Additionally, Fig. 8(b) presents the mutual correlation
coefficients, indicating that most metrics yield similar �( , with the exceptions of  ( and �� . Lastly, Fig. 8(c)
contrasts the AUROC scores achieved through both G and D-based selections for VehiGAN:

< with< = : . The
results reveal that D-based selection is more stable and effective, while G-based selection shows suboptimal
performance (with higher variance), particularly when fewer than five models are included in the ensemble.
Thus, we advocate for the use of D-based selection for VehiGAN in the remainder of this study. Additionally,
the lack of correlation and poor detection performance indicate that existing �( metrics may not adequately
assess the performance of � when trained on V2X time-series datasets. This suggests either that these metrics
are ineffective for this context or that there may be little to no strong correlation between the performances of G
and D, warranting further investigation.

6.2 Adversarial Robustness
To assess the adversarial robustness of VehiGAN, we also consider the top 10WGAN models based on the

highest average AUROC scores across all the misbehaviors in the validation dataset. We first examine the
robustness of individual WGAN-based VehiGAN1

1 under both AFP and AFN attacks (as outlined in Section 3.1.2),
followed by the robustness of the ensemble-based VehiGAN:

< . For this evaluation, we set a threshold at the
99.0 percentile of benign anomaly scores, ensuring an FPR of less than 1% without adversarial attacks. For this
evaluation, we randomly select 100 benign and 100 misbehavior snapshots from each misbehavior type, resulting
in a total of 3500 benign and 3500 misbehavior samples. Considering the proposed FGSM attack, as elaborated
in Section 3.1.2 , we explore values of n within the range of 0.0 to 0.02 to generate the adversarial samples. To
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Fig. 8. Performance analysis of G-based model selection. (a) The correlation of various metrics (�() with �( , where )()'
shows the strongest correlation, indicating its effectiveness for G-based model selection; (b) The mutual correlation among the
metrics (c) A comparison of AUROC scores illustrating the performance improvements with both G and D-based selections,
where D-based selection demonstrates superior stability and effectiveness.
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Fig. 9. Adversarial robustness of single WGAN-based VehiGAN1
1 under various attacks.

better contrast the impact of such adversarial attacks, we randomize each adversarial perturbation and use it as a
random noise baseline to evaluate the model’s response under a noisy but benign environment.
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Fig. 10. A representation of the AFP attack on a benign input.
(a) shows the gradient of the loss function with respect to the
benign input, as outlined in (5). The signs of the gradients at
each pixel determine the perturbation (e.g., ±n). (b) shows both
the benign and adversarial inputs. The markers with the black
edge ( ), and red edge ( ) indicate the corresponding original,
and adversarial values, respectively, of each sensor at different
time steps, which are either increased or decreased by n = 0.01
based on the sign of the gradient.

6.2.1 Robustness of Single WGAN-based VehiGAN1
1.

Fig. 9(a) illustrates the FPRs of the top 10 singleWGAN-
based VehiGAN1

1 models under white-box AFP attacks
and random noise. With n = 0.01 (i.e., 1% change in
the sensor values), such attacks lead to approximately
50% FPR on average. In contrast, random noise with
the same strength does not increase the FPR at all. Be-
sides, with approximately only a 2% change in the orig-
inal values, all benign samples attain anomaly scores
greater than the threshold and are labeled as anom-
alies, resulting in nearly 100% FPR in all the individual
models. Random noise at this strength, however, ex-
hibits less than 40% FPR on average. This underscores
the vulnerability of single WGAN-based VehiGAN1

1
to white-box AFP attacks. Fig. 10 illustrates an AFP
attack with n = 0.01 on a benign input.
On the other hand, Fig. 9(b) demonstrates the FNR

of the top 10 single WGAN-based VehiGAN1
1 models

under AFN attacks. It is evident from the figure that
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Fig. 11. Adversarial robustness of ensemble-based VehiGAN:
< under adaptive APF attacks.

all single WGAN-based VehiGAN models exhibit inherent robustness against AFN attacks. Despite adversarial
perturbations aiming to minimize anomaly scores, they push samples beyond the manifold of benign samples,
still creating anomalies at the discriminator. As AFN attacks prove ineffective against all single WGAN-based
VehiGAN1

1, we exclusively consider AFP attacks in the remainder of this paper, leaving the development of an
effective AFN attack as an open research question.
Subsequently, we consider a practical black-box transfer attack wherein the attacker generates adversarial

samples using one model and deploys them against others. To study the transferability of AFP attacks against
single WGAN-based VehiGAN1

1, we designate the best model (with the highest AUROC scores) as open-box and
the remaining 9 models as black-box. Thus, adversarial samples are generated using the white-box model and
evaluated against all the top 10 single WGAN-based VehiGAN1

1. Fig. 9(c) demonstrates that while the white-box
attacks result in an 80-100% FPR, the black-box attacks demonstrate very limited adversarial response, exhibiting
reactions akin to random noise.

While certain attacks may transfer at higher epsilon values, the extent is unclear, as any random perturbation
with the same intensity produces a comparable effect. For example, the 25-70% FPR at epsilon 0.02 in a black-box
attack may not solely be attributed to adversarial perturbation. Random noise with a similar strength can itself
result in 20-60% FPR (as shown in Fig. 9(a)). We hypothesize that such adversarial non-transferability may
arise from the distinctive learning approach (implicit density estimation) of GANs, differing from traditional
DL methods. This may result in diverse loss landscapes among different WGANs (discriminators), impeding
the transferability of adversarial samples, which serves as another motivation for considering ensemble-based
approaches in VehiGAN.The following sections delve into evaluating the robustness of ensemble-based VehiGAN.

6.2.2 Robustness of Ensemble-based VehiGAN:
< . In this analysis, we examine two practical adversarial scenarios.

Gray-box Single-Model Greedy AFP Attack. Firstly, we consider a less sophisticated attacker who generates
AFP samples solely using the best-performing single-WGAN-based VehiGAN and employs them to attack the
ensemble-based VehiGAN where the compromised model itself is present in the ensemble. We consider this
a gray-box greedy attack, assuming that the attacker is constrained, either lacking white-box access to all the
WGAN models in the ensemble or the ability to attack more than one model at a time. Thus, the attacker takes an
opportunistic, greedy approach, anticipating that adversarial samples from the best model will transfer to all
models in the ensemble.
The left panel of Fig. 11(a) depicts the FPRs of VehiGAN:

< with different< and all the possible values of :
under such gray-box AFP attacks (n = 0.01). Despite achieving an FPR of > 80% against the white-box VehiGAN1

1,
when applied to the ensemble-based VehiGAN:

< , the FPR substantially decreases. Increasing the number of
candidate models (<) in the ensemble increases uncertainty, diminishing the effectiveness of the attacks. The
right panel of Fig. 11(a) shows the specific impact of the number of deployed models (:) for different<. The
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figure shows that for the same<, deploying more models (higher :) further eradicates the impact of such AFP
attacks. VehiGAN:

< with< ≥ 5 and : ≥ 2 mostly provides FPRs of less than 5%, demonstrating the adversarial
robustness of VehiGAN against gray-box greedy AFP transfer attacks.

Table 3. AUROC scores of VehiGAN compared to other base-
lines (bold highlights the best) across attacks.

Vehi-
GAN10

10

Vehi-
GAN5

5

Base-
AE

Vehi-
AE

Vehi-
PCA

Vehi-
KNN

Vehi-
GMM

RandomPosition 1.00 1.00 0.98 1.00 1.00 1.00 1.00
RandomPositionOffset 1.00 1.00 0.49 1.00 0.95 0.99 1.00
PlaygroundConstantPosition 0.87 0.84 0.48 0.80 0.4 0.74 0.82
ConstantPositionOffset 0.49 0.48 0.51 0.49 0.53 0.51 0.51

RandomSpeed 0.99 0.99 0.77 1.00 0.98 0.99 1.00
RandomSpeedOffset 0.97 0.95 0.60 1.00 0.95 0.97 1.00
ConstantSpeed 0.94 0.94 0.56 0.98 0.37 0.79 0.99
ConstantSpeedOffset 0.93 0.92 0.48 0.96 0.54 0.85 0.98
HighSpeed 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LowSpeed 0.89 0.86 0.48 0.86 0.42 0.8 0.86

RandomAcceleration 0.61 0.56 0.55 0.98 0.57 0.73 0.83
RandomAccelerationOffset 0.51 0.52 0.47 0.92 0.53 0.64 0.71
ConstantAcceleration 0.41 0.56 0.74 1.00 0.94 0.99 0.97
ConstantAccelerationOffset 0.44 0.54 0.59 0.95 0.62 0.78 0.89
HighAcceleration 0.95 0.99 1.00 1.00 1.00 1.00 1.00
LowAcceleration 0.97 0.99 1.00 1.00 1.00 1.00 1.00

RandomHeading 1.00 1.00 0.97 1.00 0.99 1.00 1.00
RandomHeadingOffset 1.00 1.00 0.84 1.00 0.99 0.99 1.00
ConstantHeading 0.88 0.86 0.25 0.82 0.48 0.75 0.84
ConstantHeadingOffset 0.89 0.88 0.79 0.83 0.6 0.81 0.83
OppositeHeading 0.91 0.89 0.66 0.86 0.52 0.83 0.86
PerpendicularHeading 0.9 0.89 0.70 0.81 0.45 0.76 0.81
RotatingHeading 0.84 0.84 0.47 0.78 0.51 0.65 0.81

RandomYawRate 0.97 0.96 0.46 0.99 0.87 0.82 0.97
RandomYawRateOffset 0.93 0.91 0.50 0.98 0.8 0.74 0.95
ConstantYawRate 0.95 0.93 0.57 0.96 0.81 0.67 0.98
ConstantYawRateOffset 0.99 0.99 0.43 0.99 0.95 0.93 0.99
HighYawRate 1.00 0.99 0.59 1.00 0.97 0.97 1.00
LowYawRate 1.00 0.99 0.54 1.00 0.96 0.96 1.00

RandomHeadingYawRate 1.00 1.00 0.76 1.00 0.97 0.98 0.99
RandomHeadingYawRateOffset 1.00 1.00 0.72 1.00 0.94 0.96 0.99
ConstantHeadingYawRate 0.78 0.77 0.39 0.77 0.49 0.71 0.78
ConstantHeadingYawRateOffset 1.00 1.00 0.89 1.00 1.00 1.00 1.00
HighHeadingYawRate 1.00 1.00 0.88 1.00 1.00 1.00 1.00
LowHeadingYawRate 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.89 0.89 0.66 0.93 0.77 0.87 0.92

White-box Multi-model Adaptive AFP Attack. There-
after, we consider more advanced and adaptive attacks
with the attacker having greater knowledge and com-
putational capabilities. Under this scenario, such an
adaptive attacker has complete knowledge of the de-
fense and has access to all the weights and gradients
of all the discriminators used in VehiGAN:

< . During
AFP sample generation, the attacker utilizes all these
discriminators in loss calculation to increase anom-
aly scores for the ensembled model. The right panel
of Fig. 11(b) shows FPRs of VehiGAN:

< with differ-
ent < and all the possible values of : . It is evident
that VehiGAN:

< still demonstrates high adversarial
robustness against multi-model adaptive AFP attacks.
There exist limited adversarial samples that are effec-
tive against all discriminators (when < > 2) simul-
taneously. It is also evident from the right panel of
Fig. 11(b) that FPR falls below 5% for most VehiGAN
configurations with< > 5 and : ≥ 5. Such findings
further support the discriminators’ unique loss land-
scapes and the nontransferability property (Fig. 9(c)).
Therefore, such adaptive adversarial attacks neither
transfer nor are effective against multi-WGAN-based
VehiGAN:

< .

6.3 Baseline Comparison
In this analysis, we compare the performance of

two representatives VehiGAN (i.e., VehiGAN5
5 and

VehiGAN10
10) with other baseline methods mentioned

in Section 5.4. Table 3 provides the AUROC scores
of individual detectors against individual attacks. As
shown, in 31 out of the 35 attacks, VehiGAN10

10 or
VehiGAN5

5 outperformed the raw-based BaseAE, in-
dicating the effectiveness of VehiGAN. Moreover, to
evaluate the effectiveness of the feature engineering
step in VehiGAN, we further show the effectiveness
of all the baselines trained on the extracted features. Such baselines are named with the prefix Vehi- in the table.
As illustrated, feature engineering boosted the performance of all such VehiGAN-assisted baselines, indicating
its widespread adaptability. However, in 20 out of the 35 attacks, VehiGAN10

10 still provided the best performance.
While in themajority of the 15 other attacks, VehiGANdid not achieve the highest AUROC scores, it consistently

demonstrated a level of detection performance nearly on par with the top-performing baselines. VehiGAN10
10

particularly stands out from the other baselines to secure specific intricate features like heading with unique
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attacks, such as RotatingHeading or PerpendicularHeading, etc., characterized by their complex misbehaviors.
Furthermore, in the threat model, we consider advanced attacks (last six rows in Table 3) that manipulate both
the heading & yaw rate fields and VehiGAN10

10 appeared as the most effective MBDS against such sophisticated
attacks.

However, it is worth noting that VehiGAN showed low performance against some of the acceleration-related
attacks. One possible explanation for this is the noisy acceleration produced byVASP, even under benign conditions.
This unwanted simulation artifact has been reported on the VASP Github. Given the sensitivity of training WGAN,
compared to AE, this noise could have potentially hindered the network’s ability to effectively learn and mitigate
acceleration-related misbehaviors. Conversely, all the models failed to detect ConstantPositionOffset attacks as
they do not violate any physics, and the only way to detect them is to use additional features, such as raw positions
in VehiGAN, or run consistency checks with map data, which can work parallel as an additional detector along
with VehiGAN.

6.4 Scalability Analysis
Training WGAN models can be computationally intensive due to their implicit density estimation. However,

since training occurs offline on high-performance systems or cloud platforms with GPUs, it does not impact the
scalability of deploying VehiGAN. To assess VehiGAN’s scalability, we focus on inference times (in milliseconds)
for each of the 60 discriminators with varying numbers of layers in D during testing.
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Fig. 12. Scalability analysis of VehiGAN.

We implement both standard versions of each dis-
criminator using Keras and lightweight versions with
TensorFlow Lite (TFLite), measuring their inference
times. All experiments are conducted on a server with
an Intel Core i7-8700K CPU running at 3.70GHz on
Ubuntu 18.04.3 LTS. As shown in Fig. 12(a), standard
models require around 40 ms for inference, well within
the 100 ms interval of Basic Safety Messages (BSM),
allowing timely misbehavior detection in VehiGAN
when models run in parallel. For systems without parallel inference capabilities, TFLite models offer a low-
overhead alternative, with inference times under 0.40 ms across allD configurations (Fig. 12(b)). Although adding
layers slightly increases TFLite model inference time, it remains negligible relative to the BSM interval.

7 RELATED WORK
Different statistical approaches are utilized for misbehavior detection in the V2X scenario. Valentini et al. [54]

used a statistical approach for anomaly detection in V2V communication. Their proposed method works at the
medium access control (MAC) layer, focusing on identifying potentially malicious nodes and maintaining a
reputation list. One downside of statistical approaches is that they mostly face limitations in identifying novel or
zero-day attacks.

Due to the shortcomings of statistical methods for anomaly detection, ML-based methods are preferred since
they can learn from data to generalize the problem. Different supervised ML-based MBDS for V2X [13, 20, 45]
by previously explored research works. They explored the effectiveness of common algorithms such as logistic
regression, support vector machine, KNN, naive Bayes, random forest, decision tree classifier, etc., for misbehavior
detection in V2X. This line of research also investigated the plausibility of checks-based detectors and evaluated
the performance of the existing misbehavior datasets. Ercan et al [13] proposed extracting new features to
enhance the detection performance of such models and further studied the efficacy of ensemble-based approaches.
DL-based supervised and semi-supervised models using convolutional neural networks (CNN), LSTM, and
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transformer are also explored in [1, 31]. However, these works were implemented on limited features that skewed
their detection range.
Moreover, such supervised models often encounter difficulties in terms of achieving robust generalization

and struggle to detect unknown and evolving attack patterns, known as zero-day attacks. These challenges stem
from the limitations of insufficient and imbalanced training datasets. The main factor contributing to this is
the scarcity of real-world attack data due to a lack of deployment. Furthermore, simulated data is not always
faithfully representative of real-world situations, magnifying the generalization issue. For example, simulated
data will always struggle with long-tail data distribution and the generation of edge cases.
Reinforcement Learning (RL)-based misbehavior detection in V2X scenarios gained traction in recent years.

For example, Sedar et al. evaluate the effectiveness of RL approaches for this task, focusing on real-time position
and speed patterns [41]. Another work with deep RL employs transfer learning for collaborative misbehavior
detection among roadside units (RSUs) [40]. In the presence of attacks, they perform selective knowledge transfer
based on the trustworthiness of source RSUs to endorse relevant expertise in misbehavior detection. There
are a few works that utilize RL for an ensembling approach for MBDS in V2X. For example, [39] proposed a
data-driven ensemble framework that combines KNN-based clustering and RL to detect misbehaviors in unlabeled
vehicular data. It highlights the potential challenges of inconsistent or mislabeled training data and assesses their
performance against various attacks. Nevertheless, RL-based approaches require substantial labeled training data
and computational resources and may not generalize well to real-life situations.

Another line of work for MBDS is based on trajectory verification and checkpoint tracking, which utilizes V2X
messages. Nguyen et al. proposed an approach to verify themotion behavior of a target vehicle and the truthfulness
of data in cooperative vehicular communications by using checkpoints in predicted trajectories [34]. Physical
layer plausibility checks also seemed efficient. So et al. [49] introduced the idea of physical layer plausibility
checks based on the received signal strength indicator (RSSI) of basic safety messages (BSMs). However, these
types of defenses are only effective against the fake node-based attacker and location-based misbehaviors, leaving
the rest of the fields undefended.

In the context of anomaly detection, individual GANs and their ensemble variants have been studied extensively.
For example, Durugkar et al. introduced a multi-discriminator-based GAN architecture aimed at better approx-
imating the data distribution, thereby enabling a more stringent critique of the generator [12]. Contrastingly,
Zhang et al. proposed a framework comprising multiple generators within the GAN architecture [59] with a
focus on optimizing the performance of the generator. Han et al. advocated for a GAN framework consisting of
multiple generators and discriminators, where each generator undergoes critique from every discriminator [21].
Also, each discriminator evaluates synthetic samples from every generator. While these approaches serve as
motivation for our work, none have been tested on the V2X misbehavior datasets. We adhere to the basic WGAN
architecture, prioritizing faster and more stable training while maintaining greater control over the individual
components of the WGAN architecture.

8 DISCUSSION
Our approach in designing VehiGAN, in contrast to the aforementioned studies, incorporates several practical

considerations. Firstly, VehiGAN relies on GAN, an unsupervised DL model that does not necessitate any attack
data for training. Hence, although VehiGAN is evaluated against 35 distinct types of misbehavior, it is inherently
designed to detect zero-day attacks, as its learning process is exclusively based on the representation of benign
behavior within the V2X communication paradigm. Furthermore, as discussed in Section 4.3, physics-guided
feature engineering does not replace data-driven feature learning; rather, it enhances the learning process by
incorporating domain-specific insights. Such a pipeline exhibits a high degree of flexibility, allowing VehiGAN
to incorporate raw or processed features into the detection pipeline without modifying the overall system design.
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This integration ensures that GAN focuses on learning complex patterns beyond what can already be derived
from domain knowledge, thereby improving the overall effectiveness of the feature extraction process.

We leveraged the distinctive characteristics of implicit density estimation of the GAN learning framework to
develop an adversarially robust MBDS capable of withstanding highly adaptive attacks, even in scenarios where
the attacker has full access to all the models. To our knowledge, none of these prior works are reproducible, as
they did not share their code. Notably, we make both our code and data publicly available to support transparency
and reproducibility. Thus, we had to resort to common outlier detection algorithms to establish baselines.

9 CONCLUSION
This work presents VehiGAN, an ensemble-based MBDS for V2X networks, leveraging top-performing GANs

to address security challenges through enhanced generalization and robustness. VehiGAN possesses physics-
guided feature engineering, training of diverse GAN models, pre-evaluating using different metrics, and selecting
top-performing GANs for the ensemble. For the evaluation, we leverage a state-of-the-art V2X attack simulator
and generate a comprehensive V2X misbehavior dataset. The evaluation shows VehiGAN outperformed baseline
models in 20 out of 35 attacks and displayed similar performance in the remainder. VehiGAN showed more
effectiveness against advancedmisbehavior targeting multiple fields (such as heading & yaw rate) in V2Xmessages
simultaneously. Furthermore, VehiGAN shows approximately 92% improvement in FPR under powerful adaptive
adversarial attacker AFP attacks and inherent robustness against AFN attacks. Our findings highlight the promise
of GAN-based approaches for V2X misbehavior detection, particularly in dynamic and complex threat landscapes.
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