
iAttackGen: Generative Synthesis of False Data
Injection Attacks in Cyber-physical Systems

Md Hasan Shahriar∗, Alvi Ataur Khalil∗, Mohammad Ashiqur Rahman∗,
Mohammad Hossein Manshaei∗, and Dong Chen†

∗Analytics for Cyber Defense (ACyD) Lab, Florida International University, FL, USA
†School of Computing and Information Sciences, Florida International University, FL, USA

∗{mshah068, akhal042, marahman, mmanshae}@fiu.edu, †dochen@cs.fiu.edu

Abstract—As cyber-physical systems (CPSs) become an essential
part of critical infrastructures and industries, their technological
advancement creates a massive space for adversaries. Therefore,
it is crucial to sufficiently explore the threat space to assess
the systems’ resiliency and plan for hardening. Moreover, due
to any change in the cyber, physical, or operational level, CPSs
often demand a re-analysis of potential threats. Threat analysis
by conducting testbed experiments helps comprehend the attack
potentiality but is infeasible to explore all attack space. Formal
reasoning-based analytics are advantageous for threat analysis,
especially for being noninvasive but provable. However, due to
the convoluted features and non-linear nature of the system
parameters, such formal models also become expensive in solving
time, making them unscalable for larger systems. Hence, effective
mechanism design is essential to augment the overall performance
of the threat synthesis. This work proposes a threat analysis
framework, named iAttackGen, where we train generative adver-
sarial networks (GAN) models using the existing stealthy attack
dataset (produced from testbed experiments or formal analysis)
and generate more attack scenarios. We consider the smart power
grid as the reference CPS and stealthy attacks as the threat
model. Our evaluation results on standard IEEE bus systems
prove iAttackGen’s high accuracy and success rate in synthesizing
potential threat vectors.

Index Terms—False data injection attacks, generative adversar-
ial networks, cyber-physical systems

I. INTRODUCTION

Cyber-physical systems (CPSs) refer to the systems that
effectively use modern sensors, computing mechanisms, and
network technologies to integrate cyber and physical compo-
nents effectively [1]. Although the unification of the Internet
of things (IoT) with CPSs makes it smarter than ever, they
also create huge space for the adversaries. Utilizing the tar-
geted system’s knowledge and states, adversaries can launch
deceptive and influential stealthy attacks. False data injection
(FDI) attacks is one of the prominent cyberattacks in CPSs,
where adversaries often require the physical system’s knowl-
edge to construct attacks that can bypass existing bad/noisy
data detection processes, keeping the altered measurements
topologically harmonious with the non-attacked data collected
by the supervisory control and data acquisition (SCADA)
system to ensure stealthiness [2]–[4].

Many recent attacks against CPSs exhibit the need for
security analysis and appropriate defense. Stuxnet, a computer
worm, attacked over fifteen Iranian facilities, destroying over

a thousand uranium enriching centrifuges [5]. BlackEnergy
Malware successfully compromised the information systems of
three energy distribution companies in Ukraine. They tripped
30 substations, leaving approximately 225,000 people in dark-
ness for 1 to 6 hours [6]. Most recent, in 2021, a ransomware
cyberattack on Colonial Pipeline, an American oil pipeline
system, had all of its operations halted and paid $4.4 million
within a few hours after the attack for the recovery [7].

Therefore, the comprehensive exploration of the threat space
to assess a CPS’s resiliency while dealing with any change
in the cyber, physical, or operational level is crucial [8].
One group of threat analysis researchers conduct hands-on
testing or testbed-based experiments to comprehend the attack
potentiality (e.g., [9]). However, this approach is infeasible to
explore the all attack space. Formal reasoning-based analytics
have been proven to be advantageous for threat analysis due to
their power of modeling the whole system and being provable
and non-invasive (e.g., [10]). However, in the case of large
systems, this approach also cannot scale due to the convoluted
features and non-linear nature of the system parameters.

In Data-driven approaches, strategic decisions are taken
based on data analysis and interpretation, where relationships
between the system state variables are found without explicit
system knowledge. These approaches can be trained to gen-
erate potential attacks much faster and their accuracy can be
improved using rich historical data. One of the prominent data-
driven approaches is generative adversarial networks (GAN),
which has shown incredible generative capabilities by produc-
ing fake samples following almost the exact distribution of the
training data [11]. Thus, we propose a framework, named
iAttackGen, where we consider a customized GAN model and
train it with an existing stealthy attack dataset to regenerate
more attacks. As the power grids are an ideal example of CPSs
and stealthy FDI attacks are well-researched in this domain, we
consider them as the reference cases to evaluate the proposed
framework. Our contribution in the paper can be summarized
in the following points:

• We create an attack dataset for standard IEEE bus systems
by leveraging a formal model of stealthy FDI attacks. We
particularly consider the attacks on the state estimation (SE)
process, the core module for the power grids.

2021 IEEE Conference on Communications and Network Security (CNS)

978-1-6654-4496-5/21/$31.00 ©2021 IEEE 200

20
21

 IE
EE

 C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
k

Se
cu

rit
y

(C
N

S)
 |

97
8-

1-
66

54
-4

49
6-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

N
S5

30
00

.2
02

1.
97

05
03

4

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

• We design and implement the iAttackGen framework using
GAN to generate both random and targeted stealthy threats.
In the latter case, the framework considers the attacker’s
capability and target, i.e., a list of sensors or substations,
as the conditions to the GAN.

• To generate optimized and fine-tuned threat vectors, we
design a module, named harmonizer, to remove unnecessary
noises from the GAN-generated samples.

• We evaluate the threat analysis success of iAttackGen
on standard IEEE bus systems. The data and the codes
related to the evaluation are also publicly available at
https://sites.google.com/view/iattackgen.

Organization: We discuss the preliminary information in Sec-
tion II. We introduce the proposed framework in Section III. In
section IV, we discuss the technical details of the frameworks.
In Section V, we explain the evaluation setup and dataset. The
empirical analysis and findings are formulated in Section VI.
The related works are discussed in Section VII. At last, we
conclude the paper in Section VIII.

II. PRELIMINARIES

In this section, we discuss the necessary preliminary infor-
mation that helps to explain the iAttackGen framework.
A. State Estimation and Bad Data Detection

SE is one of the core parts of the SCADA system of CPSs,
and bad data detection (BDD) is one of the main functions
of SE. SE refers to a mathematical algorithm that processes
raw measurement data collected from the remote sensors and
estimates the system states [12]. SE and BDD help find the
best states by considering only the compliant measurement
data and eliminating outliers. In CPSs, if the measurement
vector is z and the states vector is x, then their relationship
can be presented as z = h(x) + e , where h(x) represent the
measurement functions that relate the measurement set to the
states vector, and e is the set of measurement errors, which
are assumed to be uncorrelated and follow normal distribu-
tion [12]. Linear estimation is done with the following equation:
x̂ = (H TWH)−1H TWz , where x̂ , H , and W represent the
most probable system states vector, the Jacobian matrix, and
a diagonal weighting matrix, respectively. After system sates
are estimated, residuals between measurements and estimated
states are used to identify bad data. So, the estimation of
measurements ẑ is equal to h(x̂) and the measurement residuals
set r is calculated by |z − ẑ |. If we consider that threshold of
residual as τ , any measurement zi is regarded as bad data and
removed from the SE procedure if ri > τ . , DC power flow is
used in contingency analysis due to its simplicity, robustness,
and high computation speed [13]. In DC approximation,
bus voltage magnitudes are considered to be unity and state
vector only contains the phase angles, making the h(x) a linear
function. For the rest of the paper, we use SE − BDD to
indicate the SE and BDD together.
B. False Data Injection Attacks

In FDI attacks, sensor readings are compromised in such a
way that the malicious data comply with the system topology

and remain undetected by the BDD. Usually, random system
errors of the measuring devices are responsible for the bad
data. However, in the case of FDI attacks, malicious attackers
deliberately construct and inject false data. Traditional BDD
methods work efficiently for detecting bad data in SE; however,
it becomes inefficient for detecting false data [14]. In FDI
attacks, the goal of the attacker is to change the state variable x̂
to x̂f by modifying it with a malicious amount of c, i.e., x̂f = x̂
+ c. To remain stealthy, false data a is maliciously injected into
the measurement set z and the observed measuring is zf , i.e., ẑf
= ẑ + a. Now if the condition a = h(c) holds, this false data a
will be hidden from the traditional BDD, because the residual:
r = ||zf − h(x̂f)|| = ||(z + a) − h(x̂ + c)|| = ||z − h(x̂)||.
Thus, the data injection disappears from the residual, and the
attack remains stealthy.

C. Generative Adversarial Networks

Goodfellow et al. introduced GAN, a novel way of train-
ing a generative model, where two “adversarial” neural net-
works compete against each other by playing a min-max
game [15], replicating the real-world complex content like
human-language, images, music, etc. A generative model G
builds a mapping function from a noise distribution (pz) to the
distribution of the training data (pdata), which is presented as
G(z). On the other hand, the discriminator D outputs D(x),
the probability that a particular sample is from the real data
set. Both G and D are trained simultaneously and they learn
together. The Wasserstein GAN (WGAN) is an improvement
to Goodfellow’s GAN, where the objective function of the
discriminator is presented by the earthmover (EM) distance
between real and synthesized distributions [16]. The objective
function of WGAN is defined as:

min
G

max
D

Ex∼pdata [D(x)]− Ez∼pz [D(G(z))]

WGAN can be extended to a conditional WGAN (cWGAN)
model if both the generator and discriminator are conditioned
on some extra information y, which could be any kind of auxil-
iary data, such as class labels or data from other modalities. In
this research, we also consider the attack attributes as the threat
analysis condition. Thus, cWGAN learns to generate attack
vectors considering the attacker’s goal, accessibility, resources,
and knowledge provided as the input. Therefore the application
of cWGAN allows a controlled stealthy attack generation,
where the objective function can be written as:

min
G

max
D

Ex∼pdata [D(x|y)]− Ez∼pz [D(G(z|y))]

Here, x, y, z represent the targeted data, the condition, and
the noise respectively. Thus, x and y are concatenated and
considered as the input for the discriminator and z and y are
the inputs for the generator. In this research, we particularly
apply WGAN and cWGAN for random and targeted attack
generation, respectively.

III. PROPOSED IATTACKGEN FRAMEWORK

As shown in Fig. 1, we logically separate our proposed
iAttackGen framework into three modules: i) formal module, ii)

2021 IEEE Conference on Communications and Network Security (CNS)

201
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

Formally Proved
Threats

CPSs Data,
Attack Model,

Threat Specification

GAN-based
Threat Generator

Sanitizer

Harmonized
Threats

WGAN or
cWGAN Model

Architecture

Threshold

Condition/
Target Data

Formal Threat
Analyzer

Train GAN
Model

Fo
rm

al
 M

od
ul

e

Generative Module

Harmonizer Module

Generated
Threats

,

,

Fig. 1: Block diagram of proposed iAttackGen framework.

generative module, and iii) harmonizer module. The generative
attack synthesis process starts with the formal module that takes
the targeted CPSs data, attack model, and threat specifications
as inputs and runs the formal threat analyzer to synthesize
threat vectors. It designs the stealthy FDI threat generation as
a constraint satisfaction problem (CSP). Successful executions
of this module provide formally proven threat vectors, which
are stored as TF , and later used by the generative module for
the GAN’s training.

The generative module is the core part of the iAttackGen
framework, which performs two sequential steps. First, it trains
the GAN model using the formally proven dataset TF . The
GAN model can be either a regular WGAN to generate stealthy
FDI threat vectors attacking any parts of the system, or it
can be a cWGAN, which takes the attack attributes as the
input conditions and generates threat vectors only attacking the
attacker’s targeted components. In this work, we consider the
condition as a list of sensors or substations that the attacker
has full access to and wants to generate the threats within
them. As the core functions of WGAN and cWGAN are
almost similar, we use GAN to represent both models in
general. The GAN model architecture is designed considering
the targeted system’s topology. Once the GAN training reaches
the equilibrium point, we utilize the trained generator G to
synthesize new threat vectors and store them as generated
threats TG. However, some threats may not strictly follow
the FDI constraints due to the uncertainties in GAN’s output.
Hence, to ensure the stealthiness of the generated samples, we
fine-tune them though the harmonizer module.

As the name implies, the harmonizer module enhances
the stealthiness and effectiveness of the generated raw threat
vectors through estimation and noise reduction. The core com-
ponent is defined as a sanitizer, which takes input thresholds
and regulates/estimates the threat vectors considering the sys-
tem’s topology and removes the minor/noisy components. The
thresholds define the minimum range of injection value for
any sensor in the harmonized threats. Finally, we store the
harmonized threats as TH and evaluate their performance. The
following section provides a detailed overview of each module.

TABLE I: Modeling Parameters of Formal Constraints

Notation Definition
b Bus numbers in the grid.
l Line numbers in the grid topology.
fi from-bus/starting bus of line i.
ei to-bus/ending bus of line i.
di Admittance of line i.
PLi Power flow of line i.
PBj Power consumption of bus j.
θj The state value, i.e. the phase angle at bus j.
Lj,in The sets of incoming lines to bus j.
Lj,out The sets of outgoing lines of bus j.
PGj Generated power of bus j.
PDj Load power of bus j.

IV. TECHNICAL DETAILS

In this section, we elaborate the technical details of each
module of the iAttackGen framework.

A. Formal Module

The formal module constructs the CSP considering the
power system data, i.e., topology, states, etc. Attack attributes
such as the attacker’s goals, resources, targets, etc. are also
considered in the CSP. In the power system, remote terminal
units (RTU) and intelligent electronic devices (IED) belong to
the local substations and report measurement data to the central
energy management system (EMS) through the communication
system. The sensor data contains the line power flow, bus
consumption, switch status, etc. Usually, each transmission line
has two sensors to measure the forward and backward line
power flows, and each bus has one sensor to report the bus
power consumption. Thus, any power system with b buses and l
lines can have maximum b + 2 ∗ l sensors. EMS processes the
system’s topology matrix by utilizing reported sensor data and
runs SE−BDD algorithm estimate the states. A sophisticated
attacker can have access to the sensor data and generate the
topology matrix of the system. Thus, utilizing the resources,
the attacker generates FDI threat vectors, where the goal is to
deviate the SE by injecting the malicious data into the original
sensor measurement.

The formalization of stealthy SE attacks is mainly adopted
from existing works [17]. Table I presents the notations used
for this modeling. Table II shows the formal constraints of the
DC approximated power system’s physical model, along with
the constraints for FDI threat vectors. Equation (1) shows the
relationship between the line power flow, line admittance, and
bus phase angels during the system’s pre-attack scenario. Bus
power consumption is the difference between bus generation
and bus load, as shown in (2) and (3). The injected false data
in the power flow measurement of line i, ∆PL

i , is calculated
using (4), where ∆θj is the injection in the sates of bus j. The
constraint for the injection ∆PB

j in the power consumption
of bus j is shown in (6). The final malicious measurements
of compromised line power flow and bus consumption are
expressed as (5) and (7). A critical feature of the FDI threat
vector for a power system is that if one transmission line’s

2021 IEEE Conference on Communications and Network Security (CNS)

202
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Formalization of False Data Injection Attack

Line Power Flow and Bus Power Consumption:

∀1≤i≤l PLi = di(θfi − θei) (1)

∀1≤j≤b PBj =
∑
i∈Lj,in

PLi −
∑

i∈Lj,out

PLi (2)

∀1≤j≤b PBj = PDj − PGj (3)

Attacked Line Power Flow, Bus and Load Data:

∀1≤i≤l ∆PLi = di(∆θfi −∆θei) (4)

∀1≤i≤l P̄Li = PLi + ∆PLi (5)

∀1≤j≤b ∆PBj =
∑
i∈Lj,in

∆PLi −
∑

i∈Lj,out

∆PLi (6)

∀1≤j≤b P̄Bj = PBj + ∆PBj (7)

forward line power flow is compromised , then the backward
line power flow also must be compromised with the same
magnitude to make the attack stealthy.

Each threat vector contains the information on which sensors
need to be compromised and by what amount. Thus, all the
values of ∆PL

i and ∆PB
j together represent a complete threat

vector a. The zero injection value for any sensor indicates that
the sensor does not need to be compromised to launch the
attack. Only the sensors with non-zero injection values are to be
compromised. All the synthesized threats are formally proved
and added to TF . As the system has m sensors, a threat vector
is also an m dimensional vector. Let’s assume that the formal
module generates k threats vectors; thus, the dataset TF has k
rows and m columns.

B. Generative Module

The generative module does two sequential tasks: training the
GAN model and synthesizing the threat vectors. Depending on
the types of threat generation, WGAN or cWGAN is chosen
as the GAN model.

1) Random Threat Generation: In this subsection, we
present the architecture and training of the WGAN model and
the process of random threat generation.
GAN Architecture: In WGAN, the input layer of the generator
G takes noise as input. The dimension of the noise (latent
space) depends on the system topology, which we define as p.
As the measurement vector is topologically dependant on the
state vector (∈ Rb), we consider the noise dimension p equal
to b. The number of nodes in the output layer of G is the same
as the dimension of the threat vector, which is m. Similarly, the
input layer of the discriminator (D) has m nodes. The output
layer of D has only one node, which outputs the probability of
the provided sample threat vector of being stealthy. The number
of nodes and hidden layers of G and D depend on the size of
the targeted system, i.e., the IEEE bus system. We represent
these model parameters for G and D , which also include the
learning rate, optimizer, etc. by ψ and ξ, respectively.

Algorithm 1: Training algorithm of WAGN model.
1 initialize ξ = discriminator’s parameters;
2 initialize ψ = generator’s parameters;
3 while ψ has not converged do
4 for ndiscri steps do
5 Sample real examples x(1), x(2), .., x(m) from TF
6 Sample noises z(1), z(2), .., z(m) from pg(z)
7 gξ ←

∇ξ

[
1
m

∑m
i=1 fξ

(
x(i)
)
− 1

m

∑m
i=1 fξ

(
gψ
(
z(i)
))]

8 Update: ξ ← ξ + α · RMSProp (ξ, gξ)
9 Clip: ξ ← clip(ξ,−c, c)

10 end
11 Sample noises z(1), z(2), .., z(m) from noise distribution

pg(z)

12 Gradient: gψ ← −∇ψ 1
m

∑m
i=1 fξ

(
gψ
(
z(i)
))

13 Update: ψ ← ψ − α · RMSProp (ψ, gψ)
14 for from i = 1 to nharmonize do
15 Generate a random noise vector, z
16 Generate a raw threat sample, tg ← gψ (z)
17 Harmonized threat, th ← H(HTH)−1HT tr
18 Gradient: gψ ← ∇ψMeanSquareError(tr, th)
19 Update: ψ ← ψ − η · RMSProp (ψ, gψ)
20 end
21 end

Training and Generation: We train WGAN model on TF
following the approach as shown in Algorithm 1 with the
weight clipping technique. The training is divided into three
parts. First, D is trained using a batch of real threat samples and
then WGAN-generated fake samples. Secondly, G is trained on
the synthetic threats and the weights are updated with respect
to D’s prediction. As WGAN learns the data distribution, the
training algorithm’s last loop is not something theoretically
mandatory. However, we add this extra loop to accelerate the
learning of stealthy nature of the threat vectors by G . This part
generates few threat vectors, estimates their stealthy shape, and
retrain G with the mean square error between the generated
threats and the estimated threats. Once the training is over, for
generating l threat instances, we feed an l × p dimensional
Gaussian noise to G and it outputs l × m dimensional threat
vector data. We stored the generated threat dataset as TG.

2) Targeted Attack Generation: We use cWGAN to generate
targeted threats. Depending on the attacker’s goal, we consider
two cases of the cWGAN. In the first case, the goal is to create
threats compromising sensors within the given set of sensors
as a condition. In the second case, the condition is a set of
substations/buses, and the compromised sensors only belong to
them. In these two cases, the generative models are expressed
as cWGAN-Sen and cWGAN-Sub as the conditional data are
the set of sensors, and substations, respectively.
GAN Architecture: In the conditional models, the input of
both G and D take the conditional data along with the regular
input. The condition of cWGAN-Sen is an m-dimensional
encoded binary data, where 1 means the sensor can be consid-
ered in the threat generation, and 0 means not. The condition

2021 IEEE Conference on Communications and Network Security (CNS)

203
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Architecture of GAN models

Net Layer Random Attack Targeted Attack
WGAN cWGAN-Sen cWGAN-Sub

G
Input Rp Rm+p Rb+p

Output Rm Rm Rm

D
Input Rm Rm+m Rb+m

Output R1 R1 R1

of cWGAN-Sub is also a b-dimensional binary data, where
each binary element indicates the corresponding substation.
Similarly, 1 or 0 in the conditional data represents the attacker’s
access to that substation, and thus, whether sensors from that
substations should be considered or not in the threat generation.
For both cases, the dimension of the input noise is the same as
the number of buses. These input and output data dimensions
are summarized in Table III.
Training and Generation: We train cWGAN models fol-
lowing a similar algorithm as WGAN. Additionally, here we
concatenate the condition with the noise as the input of G , and
with the samples in case of D . In this case, we need to generate
the conditional data for training from the formally proved threat
dataset TF . In the case of cWGAN-Sen, the conditional data
is the binary encoding of the threat vectors. The measurements
having non-zero and zero magnitudes are encoded as ones, and
zeros, respectively. Similarly, in generating the conditional data
of cWGAN-Sub, we assign one for any substation if at least one
sensor from that substations is considered in the threat vector,
otherwise zero. After successful training, we provide similar
conditional data to each model and analyze the generated threat
vectors’ performance.

C. Harmonizer Module

To ensure the stealthiness of the GAN generated threat vector
dataset TG, we apply the necessary calibration on the samples.
The harmonizer fine-tunes the generated raw threat vectors.
As shown in Algorithm 2, the harmonizer module primarily
does two operations. Firstly, it estimates the generated threats
using the system’s topology matrix H and then amends (dele-
tion/correction) the non-compliant data. As shown in Section II,
a generated FDI threat vector, tg can be expressed as Hc,
where c is the malicious injection in state data. Hence, the best
estimation of c can be defined as ĉ, where ĉ = (H TH)−1H T tg .
Thus, the harmonized (estimated) threat vector th = Hĉ as
shown in the algorithm

Although the GAN model generates samples according to
the real data distribution, some sensors can be assigned with
insignificant injection amounts, which may not significantly
influence the attack impact. However, compromising such
sensors adds up the cost of the attack. Thus, the sanitizer also
controls the significance of the attack points. Let’s assume the
mean and standard deviation of any threat vector are µ, and
σ, respectively. A factor λ is used to calculate two threshold
parameters ηmin, and ηmax, where ηmax = µ + λσ, and
ηmin = µ−λσ. The thresholds define the range beyond which
the injection amounts are considered significant; otherwise,
they are considered insignificant and removed.

Algorithm 2: Sanitization Algorithm (λ,Υ, TG)
1 initialize harmonized threats dataset, TH ;
2 for each generated threat vector tg ∈ TG do
3 for Harmonization repeat, j = 1 to Υ do
4 Harmonized sample, th ← H(HTH)−1HT tg
5 µ = Mean(th), σ = StandardDeviation(th)
6 Threshold, ηmax = µ+ λσ, and ηmin = µ− λσ
7 for each element t(i) ∈ th do
8 if ηmin ≤ t(i) ≤ ηmax then
9 Remove insignificant sensor, t(i)← 0

10 end
11 end
12 if th is stealthy then
13 Update harmonized dataset, TH .insert(th)
14 break
15 end
16 else
17 Repeat with the same attack vector, tg ← th
18 end
19 end
20 end

Fig. 2: IEEE 14-bus test system [18].

The cleansing of insignificant elements from the raw threats
keeps the sensors only with the notable injection amount
contributing to the attack’s intent. The value of λ controls
the number of cleaned sensors in the harmonized threats. This
cleansing makes the attack less expensive with respect to the
number of sensors to be compromised but sacrificing less on
the attack impacts by cleansing the insignificant sensors. By
adjusting the threshold value λ, the sanitizer can also control
the number of sensors to be altered/accessed to launch an
attack. However, such removal sometimes disrupts the har-
monized threat vectors’ compliance/stealthiness; thus, further
harmonization might be needed to ensure the stealthiness after
such removal. Therefore, we introduced another parameter of
Υ, which is the maximum repetition of the harmonization
process on a threat vector. After the systematic application
of these operations, we get the harmonized version of the
generated samples stored as TH . Now, the dimension of TH
depends on the successful harmonization of TG. If we assume
that among l generated threats, only h samples remain stealthy
after harmonization, then the dimension of TH is h ×m, and
the success rate of the harmonizer is h

l ∗ 100%.

2021 IEEE Conference on Communications and Network Security (CNS)

204
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

40

20

0

20

: 0.0, Numer of compromised sensors = 28, Attack Impact = 74.25
Attacked

40

20

0

20

: 0.25, Numer of compromised sensors = 17, Attack Impact = 73.99
Senitized

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

40

20

0

20

: 0.5, Numer of compromised sensors = 7, Attack Impact = 71.36
Raw

Sensor ID

In
je

ct
io

n
am

ou
nt

 (M
W

)

Fig. 3: Impact of threshold factor λ in threat sanitation process.

D. A 14-Bus Case Study

We conduct a case considering the standard IEEE 14 bus
system, as shown in Fig. 2. It has 20 lines, 14 buses, and a
maximum of 54 (i.e., 2*20+14) sensors. Fig. 3 shows how har-
monization reshapes the raw threat vector by eliminating and
amending the sensors for different λ. As the figure illustrates,
the WGAN generated raw attack vector and three stages of
sanitization for a λ of 0, 0.25, and 0.5, respectively. In the first
case (λ = 0), nothing is removed, and 28 sensors with the non-
zero injections are considered to be attacked. The impact of
such a raw threat is 74.25. Later, for λ as 0.25, any estimated
injections within the range µ± 0.25σ are replaced with zeros.
Thus, the number of non-zero injections in the sanitized threat
is reduced to 17 only. Even though the number of compromised
sensors is almost halved, the AI is still 73.99. Similarly, for λ
of 0.50, another ten non-zero sensors fall within the increased
range and get removed from the threat. In this case, the number
of compromised sensors is only 7, and the impact is still 71.36.
Therefore, by increasing λ from 0.00 to 0.50, the number of
compromised sensors is reduced by 75% but attack impact is
reduced by only 3.89%.

V. EVALUATION SETUP

This section presents the experimental setup and necessary
evaluation metrics to assess our proposed iAttackGen frame-
work’s performance. We implement the framework on the
standard IEEE 30 bus system [19]. It has 41 lines, 30 buses,
and a maximum of 112 (2*41+30) sensors.

A. Formally Proved Dataset TF
We run the formal method considering all the sensors are

accessible to the attacker, and he/she may compromise a max-
imum of five substations at a time. After the successful execu-
tions of the formal model, we generate 120 FDI threat vectors.
Thus, the dimension of the formal dataset TF is 120x112. The
dataset has 112 features, where the first 41 features represent
the forward line power flows, the next 41 features are for the

TABLE IV: GAN Architecture

GAN Architecture Generator G Discriminator D
Model ANN ANN
Layers 4 4
Nodes (WGAN) 14 Bus 14, 20, 40, 54 54, 25, 10, 1
Nodes (WGAN) 30 Bus 30, 56, 80, 112 112, 64, 32, 1
Nodes (CWGAN-Sen) 30 Bus 142, 130, 120, 112 224, 96, 68, 1
Nodes (CWGAN-Sub) 30 Bus 60, 64, 96, 112 142, 68, 32, 1
Activation∗ LR, LR, LR, LN LR, LR, LR, SG
Library PyTorch
Optimizer RMSprop
Learning Rate 5× 10−5

Max Epoch 10,000
Dimension of Noise 14 (14 Bus), 30 (30 Bus)

*LR : Leaky-Relu, LN : Linear, SG : Sigmoid

backward line power flows of the transmission lines, and the
last 30 features hold the bus power consumption data. Thus,
there is a negative correlation between each pair of the forward
and backward line power flows, to come up with an optimal
choice of parameters.

B. GAN Model Architecture

The architecture of the GAN models depends on the con-
sidered system’s topology. All three GAN models have similar
architectures and training set up, except the number of nodes
in different layers of G and D . Table IV shows the GAN mod-
els’ architectures and training parameters. Both the generator
and discriminator are four layers of artificial neural networks
(ANN). We implement the models in Python using the PyTorch
library.

C. Harmonizer Parameters

To evaluate the necessity and the impacts of the harmo-
nizer module, we use different threshold factor values λ and
maximum repeat Υ. We analyze the harmonizer module’s
performance for λ of 0, 0.25, 0.5, 0.75, and 1.00. Similarly,
to show how repetitive harmonization helps in fine-tuning the
raw threats, we use the values of 0, 1, 2, 3, 4, and 5 as Υ,
where 0 indicates no harmonization.

2021 IEEE Conference on Communications and Network Security (CNS)

205
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

1 23 44 66 87 108

1

23

44

66

87

108
0.8

0.4

0.0

0.4

0.8

(a)

1 23 44 66 87 108

1

23

44

66

87

108 0.8

0.4

0.0

0.4

0.8

(b) (c)

30 20 10 0 10 20
Injection Amount

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

 (T
ra

in
g)

F

0.00

0.05

0.10

0.15

D
en

si
ty

 (G
en

er
at

ed
)

Distribution of Sensor : 19

G

(d)
Fig. 4: Correlation heatmap of the (a) WGAN training data, (b-c) WGAN-generated data at epoch 0 and 1000, respectively, and
(d) distribution of the sensor-wise injection for sensor 19 in TF and TG.

D. Evaluation metrics

In this subsection, we define the metrics used to evaluate the
iAttackGen’s performance.
Success Rate (SR): A threat vector is considered stealthy
if none of the compromised sensors becomes outlier during
the injection. Thus, we consider the harmonization of a raw
threat vector successful if it’s the harmonized version remains
stealthy. Thus the SR can be defined as the following:

SR =
of stealthy harmonized threats

of total generated threats
× 100

Attack Impact (AI) is defined by the magnitude of deviation
in the measurement estimation due to the attack. It is the l− 2
norm of threat vector th. AI = |Zorg − Zatt| = |th|, where
Zorg and Zatt are the original and attack measurement vectors.
AI indicates the severity of a threat.
Compliance refers to the fraction of compromised elements
(sensors/substation) that are intended to be compromised. It
helps to find if the model is considering sensors outside the
intended boundary set by the condition.

Compliance =
of compromised elements in condition

of total compromised elements

Utilization refers to the fraction of elements that are compro-
mised among the total number of elements that are supposed to
be compromised. It helps understand if assets are fully utilized
or not.

Utilization =
of compromised elements condition

of total elements in condition

VI. EVALUATION RESULTS AND DISCUSSION

In this section, we evaluate and analyze the iAttackGen’s
performance in three steps. Firstly, we analyze the performance
of GAN models in training and generating new samples.
Later, we analyze different harmonization parameters’ impact.
Lastly, we show the performance of cWGAN with respect to
compliance and utilization.

A. Evaluation of Random Attack Generation

1) Training of WGAN: In this part, we specifically focus on
the WGAN model and it’s learned correlation matrix of the
different features. Fig. 4(a) shows the actual correlation matrix
of the training data (TF). Fig. 4 (b-c) show the correlation
matrices of WGAN generated fake data at different phases of
the training process. Fig. 4(b) shows random noise at epoch 0

as WGAN does not know the distribution of the features and
their dependencies. Fig. 4(c) show the correlation at epoch
1000, which looks almost the same as Fig. 4(a), indicating the
model’s accuracy in generating realistic fake samples.

2) Distribution of TG: In this part, we evaluate the training
of WGAN for learning the generalized distribution of features.
After training the WGAN model, we synthesize 1000 sample
threats using the trained generator. Among the 112 features, we
randomly select one sensor: 19, and plot it’s distributions for
both TF and TG. As Fig. 4(d) illustrates, the distributions of the
sensors in TF are incomplete as it contains a limited number
of threat vectors and spikes at different points indicate specific
injection amounts of the sensors. However, the distributions of
the generated dataset TG look almost Gaussian and uniformly
cover a wide range of injections. Thus, WGAN is can gen-
eralize the distribution although it is trained with incomplete
training data.

B. Evaluation of Harmonizer

The harmonizer reshapes the raw attack vectors based on λ
and Υ. Fig. 5 shows the impact of these parameters on different
aspects of the harmonized threat vectors.

Impact on Success Rate: Fig. 5(a) shows the impact of
λ and Υ on the harmonizer’s SR. The figure illustrates, as
λ increases, the harmonizer removes more elements with the
injection amounts within (ηmin, ηmax). Thus, a few of the
threats lose harmony, and the SR decreases. However, repetitive
harmonization improves the SR notably. As shown in the
figure, with no harmonization (Υ is 0), the SR is too low.
Thus, WGAN generated raw threats that are not perfectly
clean, which mandates their sanitization. As we introduce
harmonization, the SR quickly increases to 100% with λ equals
0.00. Similarly, in case of λ being equal to 1.00, as we increase
the value of Υ from 1 to 5, the SR increases by 25% up to 50%.
Due to the multiple harmonizations, the unpolished trimmed
threats converge towards the stealthy versions.

Impact on Compromised Sensors: The cost of a threat
depends highly on the number of compromised sensors. This
cost can be controlled by varying the λ, and removing a few
sensors by replacing their injections with zeros. The higher
λ is, the less is the number of total compromised sensors.
Fig. 5(b) shows the distribution of the percentage of compro-
mised sensors in the harmonized threats for different values

2021 IEEE Conference on Communications and Network Security (CNS)

206
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

(a)

0 20 40 60 80 100
Compormised Sensors (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

Dist. of Compromised Sensors
= 0.0
= 0.25
= 0.5
= 0.75
= 1.0

0.00

0.05

0.10

0.15

0.20

0.25

F

(b)

0 50 100 150 200 250
Attack Impact

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

Distribution of Attack Impact

F
= 0.0
= 0.25
= 0.5
= 0.75
= 1.0

(c)

0.00 0.25 0.50 0.75 1.00
Threshold Factor,

0

20

40

60

80

100

SR
 (%

)

Random Injections with Different
0
1
2

3
4
5

(d)
Fig. 5: Impacts of harmonizer (λ and γ) on WGAN generated threats w.r.t., a) success rate, b) percentage of compromised
sensors, and c) attack impact, and on threats with random noise injections w.r.t., d) success rate.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold Factor,

20

30

40

50

60

SR
 (%

)

cWGAN-Sen with Different

0
1

2
3

4
5

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold Factor,

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
or

e

cWGAN-Sen with Different

Compliance
Utilization

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold Factor,

20

40

60

80

SR
 (%

)

cWGAN-Sub with Different
0
1
2

3
4
5

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold Factor,

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

cWGAN-Sub with Different

Compliance
Utilization

(d)
Fig. 6: Performance on targeted attack generation of (a-b) cWGAN-Sen, and (c-d) cWGAN-Sub.

of λ. The figure illustrates as the training data (TF) contains
the threats, wherein average 20-30% sensors are considered.
However, the distribution of the harmonized threats without any
cleaning (λ as 0) spans a vast range, which is approximately
20% to 100%, which are highly expensive for the sensor
accessibility. Moreover, it might not be feasible for an attacker
to compromise almost 100% of the sensors. However, such
a percentage can be reduced by increasing the sanitization
threshold range. As the figure shows, the distribution gets
shifted towards zero as λ increases. Even in the case of λ
as 1.00, on average, 15% of the sensors are considered in the
harmonized threats. Thus, by tuning λ, we can give the threats
a perfect shape according to the attacker’s goals and resources.

Impact on Attack Impact: Fig. 5(c) shows the average
AI of the harmonized threat vectors for different values of λ.
The figure illustrates, even though more sensors are removed
from the harmonized threats with increasing λ, there is very
little change in the distribution of AI. As shown in Fig. 5(b-
c), initially (λ as 0), the average AI of the threats is 50,
and the average compromised sensors are approximately 50%.
However, for λ as 1.00, though the average compromised
sensors are only 20%, the average AI remains the same.
Hence, this evaluation proves that the harmonization module
successfully removes the insignificant sensors from the raw
threat vectors without hampering the intensity of them.

Harmonization of Random Injection Vectors: Lastly, we
evaluate the performance of the harmonizer in the absence of
WGAN. We generate threats using a random number generator.
Being just random numbers, as Fig. 5(d) illustrates, none of the
threats are stealthy without any harmonization (Υ = 0). Even

though one-time harmonization can make them stealthy, if we
increase λ to make the threats feasible and less expensive, SR
becomes almost 0%. This analysis mandates the application of
generative models in threat synthesis.

C. Evaluation of Targeted Attack Generation

Performance of cWGAN-Sen: Similar to the evaluation
of the WGAN model, we evaluate the SR of cWGAN-Sen.
Fig. 6(a) shows that the SR of cWGAN-Sen also follows a simi-
lar trend as WGAN. By implementing repetitive harmonization,
the SR can be increased from 7% to approximately 55%.
Besides, as we explicitly add the condition in the harmonization
process, as Fig. 6(b) illustrates, the modified threats show
a 100% compliance in considering the sensors in the threat
vectors. Thus, none of the sensors are considered outside the
provided list of sensors as a condition. Similarly, the utilization
of the initial threats is also 100%. However, as λ increases,
more sensors are removed from the threats; thus, the utilization
decreases proportionally.

Performance of cWGAN-Sub: In the evaluation of
cWGAN-Sub, we provide the list of substations as the condi-
tion. As each substation has multiple sensors, the cWGAN-Sub
model gets more flexibility in selecting sensors from different
substations. Thus, Fig. 6(c) shows a little better SR in the case
of cWGAN-Sub than cWGAN-Sen. In this case, the SR can go
as high as 75%. Similar to cWGAN-Sen, the compliance, and
utilization graphs show a similar pattern for cWGAN-Sub. As
shown in Fig. 6(d), the compromised sensors in the harmonized
threats only come from the permitted substations, making the

2021 IEEE Conference on Communications and Network Security (CNS)

207
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

compliance 100%. The utilization also starts from 100% and
decreases as λ increases.

VII. RELATED WORK

Even though GAN is primarily developed focusing on com-
puter vision, researchers are investigating the application of
GAN in other domains, including the CPSs. GAN is used
to improve the accuracy of detecting malicious samples in the
IDS. Ferdowsi et al. used GAN to design a decentralized IDS
for the IoT realm to detect anomalies [20]. In [21], Chhetri et al.
proposed a conditional GAN (cGAN)-based model to analyze
the security requirements between the cyber and physical
domains in a CPS.

A few of the researches focus on the generation of mali-
cious samples. Lin et al. proposed IDSGAN generating the
adversarial attacks, which can bypass the black box IDS [22].
Hu et al. proposed a similar framework named MalGAN
to generate malware samples against black-box ML-based
IDS [23]. Shahriar et al. proposed a GAN-based approach
to create a synthetic network attack dataset from the existing
data [24]. Ahmadian et al. presented GAN based false load
data generator in [25], which only paper focuses on the false
sensor data generation. However, they did not consider the
sensors’ physical relationships. In regards to resisting cyber
attacks leveraging GAN, Li et al. proposed a GAN based cyber-
physical model to defend against FDI attacks [26].

Most of the existing works investigated the application of
GAN for CPSs network datasets. Even though some of them
considered sensor datasets, the application of GAN for the
FDI threat generation is less explored. Mohammadpourfard
et al. proposed the generation of FDI attacks using cGAN
in [27]; however, they didn’t consider attacker’s capability. The
conditions only specified the states to be manipulated, not the
measurements that need to be altered. They also didn’t consider
attack data for training. The malicious data for network packets,
i.e., IP address, protocol type, flags, etc., can only be generated
considering the statistical distribution. However, in the case of
stealthy attack synthesis, the stealthiness must be ensured based
on the CPSs topology. Our study shows that mere GAN cannot
generate perfect stealthy samples; instead, these samples need
to be further refined.

VIII. CONCLUSION

Analyzing the threat space is the essential technique to assess
the vulnerability and increase the robustness of CPSs-based
critical infrastructures. Constrains satisfaction-based methods
are highly computationally expensive and lose scalability in
the case of dynamic complex systems. However, data-driven
approaches are showing promising results in solving complex
problems in realtime. In this paper, we propose a GAN-based
intelligent attack generation framework, titled iAttackGen. The
framework is trained real or formally synthesized threats dataset
and synthesizes new raw threats. A harmonizer module ensures
the stealthiness of the samples by adjusting them according to
the system’s topology. Our evaluation results on the standard
IEEE bus system show a high success rate in random and
targeted threat generation.

REFERENCES

[1] S. Zeadally and N. Jabeur, Cyber-physical system design with sensor
networking technologies. Inst. of Engineering and Technology, 2016.

[2] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” in ACM CCS, 2009.

[3] M. Rahman, M. Shahriar, M. Jafari, and R. Masum, “Novel at-
tacks against contingency analysis in power grids,” arXiv preprint
arXiv:1911.00928, 2019.

[4] M. Jafari, M. H. Shahriar, M. A. Rahman, and S. Paudyal, “False relay
operation attacks in power systems with high renewables,” arXiv preprint
arXiv:2102.12041.

[5] D. Albright, P. Brannan, and C. Walrond, “Stuxnet malware and natanz:
Update of isis december 22, 2010 report,” ISIS, 2011.

[6] R. Khan, P. Maynard, K. McLaughlin, D. Laverty, and S. Sezer, “Threat
analysis of blackenergy malware for synchrophasor based real-time
control and monitoring in smart grid,” in 4th ICS-CSR 2016.

[7] C. B. Kelly, “Cyber attack shuts down u.s. fuel pipeline ‘jugular,’ biden
briefed,” 2021, accessed: 2021-06-17.

[8] N. I. Haque, M. H. Shahriar, M. G. Dastgir, A. Debnath, I. Parvez,
A. Sarwat, and M. A. Rahman, “A survey of machine learning-based
cyber-physical attack generation, detection, and mitigation in smart-grid,”
in 52nd North American Power Symposium (NAPS). IEEE, 2021.

[9] A. Barua, “Hall spoofing: A non-invasive dos attack on grid-tied solar
inverter,” in 29th USENIX Security Symposium, 2020.

[10] M. A. Rahman, E. Al-Shaer, and R. Kavasseri, “A formal model for
verifying the impact of stealthy attacks on optimal power flow in power
grids,” in ACM/IEEE ICCPS, Apr. 2014.

[11] C. Li, S. Wang, P. S. Yu, L. Zheng, X. Zhang, Z. Li, and Y. Liang, “Dis-
tribution distance minimization for unsupervised user identity linkage,”
in 27th ACM CIKM, 2018.

[12] A. Abur and A. G. Exposito, Power system state estimation: theory and
implementation. CRC press, 2004.

[13] D. Van Hertem, J. Verboomen, K. Purchala, R. Belmans, and W. L. Kling,
“Usefulness of dc power flow for active power flow analysis with flow
controlling devices,” in 8th IEE ACDC, 2006.

[14] R. Xu, R. Wang, Z. Guan, L. Wu, J. Wu, and X. Du, “Achieving efficient
detection against false data injection attacks in smart grid,” IEEE Access.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems.

[16] Q. Wang, X. Zhou, C. Wang, Z. Liu, J. Huang, Y. Zhou, C. Li, H. Zhuang,
and J. Cheng, “Wgan-based synthetic minority over-sampling technique:
Improving semantic fine-grained classification for lung nodules in ct
images,” IEEE Access.

[17] M. Rahman, E. Al-Shaer, and R. Kavasseri, “A formal model for verifying
the impact of stealthy attacks on optimal power flow in power grids,” in
2014 ACM/IEEE ICCPS. IEEE, 2014.

[18] M. A. Rahman, E. Al-Shaer, and R. Kavasseri, “Impact analysis of
topology poisoning attacks on economic operation of the smart power
grid,” in ICDCS, Jul. 2014.

[19] “Ieee 30-bus system,” www.icseg.iti.illinois.edu/power-cases/.
[20] A. Ferdowsi and W. Saad, “Generative adversarial networks for dis-

tributed intrusion detection in the internet of things,” 2019.
[21] S. R. Chhetri, A. B. Lopez, J. Wan, and M. A. Al Faruque, “Gan-

sec: Generative adversarial network modeling for the security analysis
of cyber-physical production systems,” in 2019 DATE, 2019.

[22] Z. Lin, Y. Shi, and Z. Xue, “Idsgan: Generative adversarial networks for
attack generation against intrusion detection,” arXiv, 2018.

[23] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

[24] M. H. Shahriar, N. I. Haque, M. A. Rahman, and M. Alonso, “G-ids:
Generative adversarial networks assisted intrusion detection system,” in
IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, 2020.

[25] S. Ahmadian, H. Malki, and Z. Han, “Cyber attacks on smart energy
grids using generative adverserial networks,” in IEEE GlobalSIP, 2018.

[26] Y. Li, Y. Wang, and S. Hu, “Online generative adversary network based
measurement recovery in false data injection attacks: A cyber-physical
approach,” IEEE Transactions on Industrial Informatics, 2019.

[27] M. Mohammadpourfard, F. Ghanaatpishe, M. Mohammadi, S. L., and
M. Pechenizkiy, “Generation of false data injection attacks using condi-
tional generative adversarial networks,” in 2020 IEEE PES ISGT-Europe.

2021 IEEE Conference on Communications and Network Security (CNS)

208
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 15:01:46 UTC from IEEE Xplore. Restrictions apply.

