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Abstract—The boundaries of cyber-physical systems (CPS) and
the Internet of Things (IoT) are converging together day by day to
introduce a common platform on hybrid systems. Moreover, the
combination of artificial intelligence (AI) with CPS creates a new
dimension of technological advancement. All these connectivity
and dependability are creating massive space for the attackers to
launch cyber attacks. To defend against these attacks, intrusion
detection system (IDS) has been widely used. However, emerging
CPS technologies suffer from imbalanced and missing sample
data, which makes the training of IDS difficult. In this paper, we
propose a generative adversarial network (GAN) based intrusion
detection system (G-IDS), where GAN generates synthetic samples,
and IDS gets trained on them along with the original ones.
G-IDS also fixes the difficulties of imbalanced or missing data
problems. We model a network security dataset for an emerging
CPS technologies using NSL KDD-99 dataset and evaluate our
proposed model’s performance using different metrics. We find
that our proposed G-IDS model performs much better in attack
detection and model stabilization during the training process than
a standalone IDS.

Index Terms—Generative Adversarial Networks, Cyber-
Physical Systems Security, Intrusion Detection System

I. INTRODUCTION

Cyber-physical systems (CPS) can be referred to as con-
temporary systems with assimilated computational and physical
capabilities that can communicate with humans in new modal-
ities [1]. These systems have an enormous impact on various
domains like environmental monitoring, intelligent transporta-
tion, production system, smart grid, smart home, smart city, and
the smart healthcare system. All these domains are dependent
on the network as they require remote data transfer for sending
data from sensors to actuators via a control center. Communi-
cation in the wide-open network makes the system vulnerable
and creates a humongous attack space for adversaries [2].

The Internet of things (IoT), one of the essential sub-domain
of CPS, has taken a significant technological advancement to
a whole new level where data is the main force. IoT has
opened up a new dimension in conjunction with actuators,
electronics, sensors, software, and connectivity to enhance
connection, collection, and data exchange. In spite of wide
acceptability, almost 80% IoT devices are vulnerable to a wide
range of cyber attacks [3]. They are susceptible to various
kinds of attacks like man-in-the-middle, data and identity theft,
distributed denial of service (DDoS), device hijacking etc. To
protect safety critical systems from the intruders, robust security
measures must be taken into consideration to detect all kinds
of known and unknown attacks [4]–[6]. Intrusion Detection
Systems (IDSs), responsible for inspecting network traffic and

system data for malicious activities and issuing alerts, are the
first and foremost part of the defense strategy in the CPS
domain. Having the proper knowledge of exact place and time
where specific abnormalities are creating hazards in the system
helps to mitigate the impacts by taking appropriate actions,
and thus intrusion prevention systems come into the picture.
The intrusion prevention system works simultaneously with an
intrusion detection system to prevent the attacker from doing
any harm to the system.

Machine learning-based IDS can detect abnormalities in the
system with substantial accuracy [7]. Though the emerging IT
trends in CPS such as Industry 4.0, IoT, big data, and cloud
computing are adding more momentum, they are introducing
more vulnerabilities as well [8]. Besides, novel architectural
compositions are adding complexity to the model due to
unknown emergent behavior [9]. Individual IDS needs to be
implemented to observe their interaction with this complex
system, but insufficient data are limiting the model training.
Moreover, most of these available datasets are imbalanced
where different types of attack data are not available on a large
scale compared to the normal data. Thus, to handle these lim-
itations, we develop a generative adversarial network (GAN)-
assisted IDS that can mitigate the dataset related limitations for
all these emerging technologies.

Our contribution to the paper can be summarized in the
following points:

• We model an IDS using artificial neural network (ANN)
that can be trained on any database with high accuracy.

• We model an emerging CPS security dataset where stan-
dalone IDS is unable to predict with high accuracy.

• Most importantly, we propose a new security framework,
G-IDS, where GAN generates more training data to solve
the imbalanced and missing data problems. Evaluating the
performance of standalone IDS (S-IDS) and G-IDS, we
find that G-IDS outperforms S-IDS in different ways.

• We evaluate our proposed framework in a widespread
network intrusion detection dataset KDD’99.

Organization: The rest of the paper is organized as follows:
We add sufficient background information, and our motivation
towards this research focus in Section II. The related works
are discussed in Section III. We introduce our proposed G-IDS
framework in Section IV. Section V discusses the technical
details of the framework, along with the complete analysis
of our algorithm. In Section VI, we explain the evaluation
setup and dataset along with the data pre-processing and
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Fig. 1. Cyber-Physical System

data modeling steps. The empirical analysis and finding are
formulated in Section VII. At last, we conclude the paper in
Section VIII.

II. BACKGROUND AND MOTIVATION

The term CPS refers to a new generation of systems with
integrated computational and physical capabilities that can in-
teract with human through state-of-the-art modalities. However,
the seamless connections of IoT in CPS realm are opening the
gates for the cyber attackers to launch different types of attack.
To defend a CPS from being compromised, IDS is widely used.
In this section we briefly discuss security aspects of CPS and
the importance of IDS. We also give a short overview of GAN
that we apply in our proposed solution. Finally, we discuss the
motivation of this research.

A. Security Challenges in CPS

CPS is an amalgamation of computation, networking, and
physical processes. IoT is another form of CPS which is a
realm of connecting devices with sensing, computational, and
actuating power. The emerging technologies, i.e., real-time data
processing, machine learning, big data analytics, embedded
systems, are shaping the IoT infrastructure nowadays.

Moreover, each day, lots of sophisticated and novel appli-
cations are being implemented. According to the statistics,
in 2020, there will be 20.4 billion connected IoT devices,
and by 2026 it will be around three trillion [10]. The recent
invention of 5G technology can take the internet speed to
a whole new level. Although the emerging CPS possess a
humongous amount of data, the security and privacy of these
complex systems face a significant amount of challenges due to
non-homogeneous nature with other known systems and lack
of related data and experimentation [11], [12].

CPS are adding new vulnerabilities due to: 1) replacement of
traditional electro-mechanical relay-based controller by sophis-
ticated software interaction-based microprocessor and operating
systems, which enlarges the potential threat spaces, 2) growth
of connected open-network consisting sensitive components, 3)
public availability of internal system design and protocols, 4)
radical increase in the number of functionalities, operations,
and events, and 5) drastic surge of the technologically skilled
cyber-criminals [13]–[15].

B. Intrusion Detection Systems in CPS

Along with the positive impacts of CPS in our lives, the
risk of security breaches enhances parallelly. Moreover, IoT is
being used in most of the critical infrastructures, which may
cause a huge loss if an attacker gets control over them. An
enormous amount of data is being processed and sent through
the communication to keep the synchronization among all the
equipment. A slight alteration in the data can cause severe
destruction in the whole system. An IDS is a device or software
application that monitors a network or system for harmful
activities and rule violations. Thus, along with the device-level
security, a dedicated IDS can ensure the high-level defense to
the whole system.

Different types of IDS are widely implemented in the CPS
domain. Data mining, machine learning, rule-based model,
statistical modeling, protocol model, signal processing model,
etc. are used in CPS [16]. Among them, anomaly-based IDS is
mostly used. Anomaly-based IDS learns the distribution of data
in the training process. If the new coming data is not from the
same distribution, it is detected as an anomaly. Whenever the
system has new training data, it trains the IDS model and keeps
updated with the novel attacks. Thus, the defense mechanism
of anomaly-based IDS is a dynamic process and needs more
data for each label to train its model correctly [17].

Other than the anomaly-based model, various types of
intrusion detection techniques are also used in the defense
mechanism. Different machine learning and deep learning-
based algorithms are showing high detection accuracy [18]–
[21]. For classification type IDS, supervised learning is widely
used, and unsupervised learning is usually used for clustering
based IDS [22]. Besides, different data mining techniques
are also used to extract important features from the bulk
amount of data [23]. Statistical analysis also shows an efficient
performance in the anomaly detector from the historic data [24].
Signal processing is also used to observe the pattern of the
network and detect the abnormality [25]

C. Generative Adversarial Networks (GAN)

GAN was invented by Goodfellow et. al in 2014 [26].
It is one of the most powerful and promising tool in deep
learning. GAN estimates a generative model though adversarial
approach. It consists of two independent models: generator (G)
and discriminator (D). The generative model G estimates the
data distribution p(g) over real data space x. Considering an
input noise variable p(z), the goal of G is to generate new
adversarial sample G(z) that comes from the same distribution
of x. One the other hand, the discriminator model D returns the
probability D(x), that the given sample x is from real data set
rather generated by G. The ultimate goal of G is to maximize
the probability that D would mistakenly predict generated data
as real one and for D the goal is to do the opposite. Thus, G
and D play a two player minmax game and at the end they
reach to an unique solution. The value function V (G,D) is
defined as follows:

min
G

max
D

V (D,G) =

Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]
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Thus, to achieve the optimum solution, these two game
participants need to continually optimize themselves to improve
their ability to reach the Nash equilibrium [27].

D. Research Motivation

The emerging CPS domains are going to reshape the world
through technological advancement. Due to the uniqueness of
each CPS domain, the attack patterns and threats also differ
from each other. Most importantly, an emerging CPS always
lacks such types of database to train the IDS to detect the
probable attacks. Even if there is a database, the number of
samples of each type of attack may not be enough for the
IDS to get trained perfectly and detect with higher accuracy.
Moreover, IDS is facing novel zero-day attacks more often as
the cyber attackers are much more sophisticated nowadays and
launch new types of cyberattacks regularly.

Thus, IDS can not be trained with high accuracy unless
sufficient data is available. Besides, the size of normal data
points is too large compared to the abnormal/attack data, which
creates a data imbalance problem during the training. Moreover,
even if there is a significant amount of data available, the
distribution of the data space may not be apparent to IDS due to
some missing data. On the other hand, GAN is a promising deep
learning tool with the capability of learning the distribution of
provided data and generates new similar samples.

Thus, to solve all the aforementioned problems, a GAN
assisted IDS framework can be used to generate new data for
all the labels that need improvements in prediction. Moreover,
a comprehensive framework is also needed to deal with the
imbalanced and missing data-related issues of the emerging
CPS technologies.

III. RELATED WORK

There is a recent trend in the scientific community to study
GAN’s potential application in the CPS domains. GAN has
promising applications in the security perspective of a CPS.
Whereas some authors implemented GAN to attack, some
utilized it to make the system robust.

Chhetri et al. proposed a conditional GAN based model
to observe important security requirements by analyzing the
relations between the cyber and physical domains in a CPS [28].
Yin et al. proposed a framework based on GAN along with the
Botnet detection model, which improves the performance of the
detection mechanism of a most formidable attack retaining the
primary characteristics of the original detection model [29]. Seo
et al. proposed a GAN-based model to reduce false positive rate
in vehicle networks for enhancing driver’s safety [30]. Some
research works have attempted to find vulnerabilities of the sys-
tems using GAN. Li et al. used LSTM-RNN in GAN to capture
the distribution of the multivariate time series of the sensors and
actuators to detect abnormal working conditions for a sophis-
ticated six-stage Secure Water Treatment (SWaT) system [31].
Usama et al. demonstrated that ML models are vulnerable to
adversarial perturbation in the network traffic [32]. They mainly
focused on deceiving machine learning-based IDS using the
GAN-based adversarial model. Huang et al. proposed IDSGAN,
which leverages a generator to transform original malicious
traffic into adversarial malicious traffic examples [33].

On the other hand, GAN based anomaly detection model
is gaining popularity. Ferdowsi et al. proposed a distributed
adversarial network for providing a fully decentralized IDS
for the IoT realm to detect anomalies, which is practical to
conceal the user’s sensitive data [34]. Belenko et al. explored
the security breaches of a large scale CPS using generative
adversarial ANNs [35]. GAN based models are also poplar to
deceive detection models. Hu et al. proposed a GAN based
framework named MalGAN to generate adversarial malware
samples that can bypass any black-box machine learning-based
detection models [36].

All of these works represents the application of GAN in
CPS security. However, none of these works deals with imbal-
anced and limited data for emerging CPS technologies. Unlike
the works mentioned above, we propose a comprehensive
framework to synthesize training data that can improve the
performance of IDS in cyber attack detection. Even though we
evaluated our framework on the network intrusion detection
dataset with ANN-based IDS, it is compatible with any IDS
and different sensors and network datasets.

IV. PROPOSED G-IDS FRAMEWORK

We divide our proposed G-IDS framework into four different
segments: 1. Database module 2. Intrusion detection system
module 3. Controller module, and 4. Synthesizer module. Fig. 2
shows the block diagram of our proposed framework. At first,
the database module collects real-world intrusion detection data
from its data collector. Database module may also get synthe-
sized data from the generator of the data synthesizer module.
All of these data are accumulated parallelly and continuously
and stored in the database with different flags to distinguish
data sources. The synthesized data are sub-categorized into
pending and synthetic classes. Pending data are uncommitted
data that can be either accepted or deleted depending on the
future decision of the controller module. On the other hand, data
flagged as synthetic are already verified and stay permanently
in the database. We consider a hybrid database that contains
only original and synthetic data samples.

An ML-based model in the intrusion detection systems
module gets trained twice on the data available in the database.
The first one is trained on the hybrid dataset only, while the
other model gets trained on both hybrid and pending datasets.
The controller evaluates the performances of these two models
of the IDS. Based on the evaluation, the controller decides to
reject/accept the pending samples in the database. The pending
samples are accepted and appended to the database as synthetic
data if the model shows a better result after getting trained on
them. Otherwise, the pending samples are rejected and removed
from the database.

After that, controller module measures the detection rate for
each class and makes a list of those for which the performance
of the IDS falls below a certain threshold. Data samples for
the weakly detected classes are sent to the data synthesizer
module to generate more samples. Data Synthesizer module
consists of a GAN, which generates new samples by learning
the input data distribution. After generating potential samples,
Data Synthesizer module feeds them in the database module
with a pending flag. The overall process is repeated until the
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label-wise performance of the IDS model becomes satisfactory
to the controller. The Algorithm 1 provides a comprehensive
summary of the complete framework.

V. G-IDS TECHNICAL DETAILS

This section provides the technical description of the four
modules of the G-IDS framework.

A. Database Module (DM)

As shown in Fig. 2, DM consists of two important elements:
data collector and database.

1) Data Collector (DC): In the proposed framework, we
consider that the IDS is a network intrusion detector. Thus,
DC collects real-world network data by capturing network
packets. The packets are processed before feeding into the
database. A packet capture application (i.e., Wireshark) runs
within DC to collect packets and extract features from them.
The responsibilities of DC is categorized into two types:

• Data Collection: Data collection is the initial stage of the
network-based IDS, as shown in Fig. 2. The communi-
cation between the sensors and the actuators of a CPS
generates a vast amount of network data, which mostly
contains normal/good data. However, an adversary can try
to compromise the sensors or the communication channels
to launch a cyber attack. Thus, to make the system robust
against any kind of cyber attack, DC works along with a
firewall to label those packets. After collection, DC does
some pre-determined prepossessing on them to make them
feedable to ML models.

• Data Preprocessing: As the network packet analyzer col-
lects a massive chunk of data from the network, some
prepossessing is mandatory to gather information from
those packets. In our proposed model we consider the
following tasks:
Encoding: Label encoding is the technique of encoding
categorical values in the dataset. It transforms each cat-
egory of a particular feature with a value between 0 to
n-1, where n is the number of distinct categories of that
feature.
Feature Scaling: Feature scaling is a method used to
normalize the range of features. A dataset containing
features that are highly varying in magnitudes, units, and
range can become a critical problem for various ML
algorithms that use Euclidean distance between two data
points in their computations. To overcome this problem,
we apply standard scaling to normalize the features.
Feature Extraction: Feature extraction (also known as
feature reduction) remodels the high-dimensional space
to fewer dimensions, where the transformation could be
linear or non-linear. It helps to eliminate the redundant
variables and makes the model a simpler one.

2) Database (DB): Database stores the collected data from
DC and DSM, along with the labels and corresponding flags.
Each label represents the type of data (i.e., normal/attack). In
the case of attack data, the label shows the type of attack. The
flag bit for each sample indicates the status for that particular
data as explained below:

• Original: Data collected from DC are flagged as original.
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Algorithm 1: Proposed Algorithm of G-IDS

initialization Database = Data collected from DC;
for true do

• Train IDS model on HybridDatabase
• Update performance metrics, PMH

• Controller lists all labels with PMH < PMTH and sends them to the DSM
• Create List of weak labels for PMH < PMTH

for each label l in List of weak labels do
for number of epoch do

for k steps do
• Create a temporary copy of HybridDatabase replacing label l with 1 and the rest with 0.
• Sample m noise z(1), z(2), .., z(m) from noise distribution pg(z)
• Sample batch of m examples x(1), x(2), .., x(m) from HybridDatabase
• Update the discriminator model (D) by ascending its stochastic gradient:

Δθd

1

m

m∑

t=1

[logD(x(t)) + log(1−D(G(z(t))))]

end
• Sample batch of m noise z(1), z(2), ...z(m) from noise distribution pg(z)
• Update the generator model by descending its stochastic gradient:

Δθd

1

m

m∑

t=1

log(1−D(G(z(t))))]

end
• Generate p samples for label l and add them to Database with flag p

end
• Train IDS on Database with pending samples
• Update performance metrics, PMP

if PMP > PMH then
• Accept pending (if any) samples for each label
• Updates flags from pending to synthetic
• add them to HybridDatabase

else
• Remove pending samples from Database

end
end

• Pending: As mentioned in Section IV, DSM generates
more data to improve the performance of IDS. However,
due to the uncertainty of the GAN, every batch of the
generated data does not guarantee the improvement of the
performance of IDS. Hence, the generated data are flagged
as pending in the first place, and the controller does the
further inspection.

• Synthetic: If the pending data contribute to the improve-
ment in the performance of IDS, the controller changes
their flags from pending to synthetic and stores them
permanently in the database. Whenever, the pending data
convert to synthetic, they become the part of the hybrid
dataset.

Table I demonstrates an example database for some samples
along with the labels and flags before encoding.

TABLE I
AN EXAMPLE DATABASE

Duration Protocol Type Service . . . Label Flag
0 tcp http . . . normal original
0 icmp ecr i . . . smurf original
18848 tcp telnet . . . normal pending
199 tcp telnet . . . spy synthetic

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

18848 tcp telnet . . . normal synthetic

B. Intrusion Detection System Module (IDSM)

The core part of IDSM is an ML-based IDS which, in this
case, is a multi-layer ANN-based model. It consists of 4 layers,
where the input and output layers have 20 and 10 nodes,
respectively, and both of the hidden layers consist of 50 nodes.
IDS is trained twice to calculate the following two performance
metrics which are useful to evaluate the synthesized data-
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Performance metric without pending data (PMH ): After
collecting data from the data collection module, IDS trains
the model on the hybrid database containing only original and
synthetic data. Then, IDS evaluates the label-wise performance
metrics and stores in PMH , which is the current best possible
performance of the module.

Performance metric with pending data (PMP ): After
obtaining synthesized data with the pending flag, IDS re-train
the model on the hybrid database, including the pending data,
to evaluate the additional contribution of the pending data
points. The performance metric is stored in PMP . Both of these
evaluation metrics are available to the controller module based
on which it takes a further decision on pending data.

C. Controller Module (CM)

CM performs two important tasks in parallel.
Sending data synthesize request to the DSM: Firstly, the

controller analyzes PMH and compare it with the PMTH ,
which is the minimum threshold for the performance metric.
Any class with an individual performance score below the
PMTH is considered as the weak class, which needs the aid of
DSM in the generation of new samples to improve the detection
rate. Each time the CM sends a request for one label with the
hybrid database and continues for all the remaining weak ones.

Evaluating pending data requests from DSM: CM an-
alyzes the evaluation metric PMP and PMH to update the
database. Comparing these two metrics, CM suggests the
database to remove the pending samples for a specific label if
the performance degrades with them. On the other hand, if the
performance improves, CM recommends accepting the pending
data by updating the pending flags to synthetic.

D. Data Synthesizer Module (DSM)

The core part of the DSM is a GAN-based model. Fig. 2
shows the DSM, which consists of two ML models: 1. generator
(G) and 2. discriminator (D). The controller selects one class
and sends the whole database to the DSM, mentioning 1 as
the label of that specific class and 0 for the rest of the classes.
Thus, for DSM, it becomes a binary classification model and
generates more samples after successful training. We model
both the generator and discriminator using four-layer ANN.
Each of the hidden layers has 50 nodes. The input and output
layers of discriminator have 20 and 1 nodes, respectively.
Besides, the generator takes a noise (latent space) as an input
and produces artificial samples. Thus the input and output layers
of the generator have 5 and 20 nodes, respectively. Once the
GAN training is complete, it generates new samples with higher
accuracy and asks the DB to add them with pending flags.

VI. EVALUATION METHODOLOGY

In this section, we introduce the experimental setup and
necessary evaluation metrics to assess our proposed G-IDS
framework’s performance.

A. Dataset

The intrusion detection dataset of emerging CPS carries a
lot of benign data comparing to attack data. Thus, we resemble
the empirical data-limitation scenario by modifying KDD’99

TABLE II
CLASS LABELS AND THE NUMBER OF SAMPLES APPEARING IN THE

DATASET

Label Attack Original Data Class
1 Back 2003 DoS
2 Ipsweep probe 1047 PA
3 Perl u2r 1070 UTR
4 Normal 9707 Normal
5 Neptune dos 1070 DoS
6 Smurf dos 840 Do S
7 Spy r2l 1389 R2L
8 Warezclient r2l 779 R2L
9 Warezmaster r2l 820 R2L
10 Phf 550 R2L

dataset [37] and use it to evaluate our model by analyzing
different attack detection.

The dataset contains ten different labels, which can be
categorized into a. Denial of Service Attack (DoS), b. User to
Root(UTR) Attack, c. Remote to Local Attack (R2L), and d.
Probing Attack (PA), etc [38]. Table III demonstrates the num-
ber of supporting data for all attack labels. The characteristics
of our dataset can be formalized as follows:

1) Multiclass: Our dataset in consideration is a multiclass
dataset that contains nine different types of attacks from four
different classes and one normal label, as shown in Table II.

2) Sparse: Sparsity is a process of determining the number
of missing values present in the dataset. A variable with
sparse data is one in which a relatively high percentage of
the variable cells do not contain actual data. Data sparsity is
widely considered as a key cause of unsatisfactory classification
accuracy. Our dataset is purely cleaned one with no missing
attributes and records. However, sparsity calculation using the
following equation returns 70% sparsity, which is basically
produced due to one-hot encoded features. Data sparsity can
be calculated using:

Sparsity = 1− non zero count(X)

number of elements(X)

where X denotes the dataset.

3) Imbalanced: Imbalanced data hinders the performance
of a classification problem. The number of observations per
class is not equally distributed, and there is an enormous
amount of observations for a particular class (majority class)
and significantly less number of samples for one or more other
classes (minority classes). Our dataset is an example of an
imbalanced dataset as the number of benign examples dominate
the number of attack examples.

B. Data Preprocessing

Before training the model, some pre-processing is required
to be performed. After a complete analysis, we perform the
following techniques for data pre-processing.

1) Encoding: To deal with three categorical input features
(namely, protocol type, service, and flag) and one output fea-
ture, we encode the corresponding data by applying the label
encoding technique.

381

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 04:06:32 UTC from IEEE Xplore.  Restrictions apply. 



2) Feature Scaling: Feature scaling is an essential step to
deal with local optima, and skewness towards particular fea-
tures. It also facilitates the ML-based IDS with faster training.
We apply standard scaling, which replaces the values by their
Z-scores. Z-score of a data point represents the measure of
deviation from the mean value. z-score, zi, is calculated using
the following equation:

zi =
xi − xmean

xstd

where xi represents the value of each feature, xmean is the
average value of the feature, and xstd denotes the standard
deviation.

3) Feature Extraction: To reduce the number of features,
we utilize principal component analysis (PCA)-based feature
extraction method. PCA is an unsupervised, non-parametric
statistical procedure that computes a new set of variables
(”principal components”) and expresses the data in terms of
these new variables and uses an orthogonal transformation to
transform a set of observations of possibly correlated vari-
ables [39]. Mathematically, PCA is calculated via linear algebra
functions called eigendecomposition, a process of factorization
of a matrix into a canonical form.

For selecting the number of principal components, we use
the explained variance ratio, representing the amount of infor-
mation retained after applying PCA. The total variance is the
sum of variances of all individual principal components. We use
PCA on all the original 42 features and shrink the dimension
into 20 elements, keeping the total explained variance 91.14%.

C. Data Modeling

To mimic an emerging CPS, we have taken only 5000
samples for training, and the rest of the data are used for testing
purposes. As the dataset in consideration is imbalanced, the
training data set loses some labels if the dataset is randomly
split. To overcome this problem, we randomly select data from
all available classes.

D. Evaluation

We have considered the following metrics for evaluating the
performance of our model.

1) Precision: Precision is the ratio of correctly predicted
positive observations to the total positive observations.

2) Recall: Recall is the ratio of correctly predicted positive
observations to the total actual positive observations.

3) F1 score: F1 score is a weighted average of precision
and recall that takes both false positives and false negatives
into account. In the case of unequal distribution of false
Negative and false Positive values, F1 score can infer better
comprehension of the model’s performance.

4) Confusion Matrix: Confusion matrix is a table that in-
tends to present the count of correct and incorrect predictions
made by each class. It gives a clear insight into the prediction
and shows the classification/misclassification type (e.g., True
Positive, True Negative, False Positive, False Negative). Thus,
the performance of an IDS can be analyzed using these four
important key factors as shown in Table IV.

TABLE IV
EVALUATION FACTORS

Indicator Actual Label Prediction
True Positive, TP Attack Attack
False Positive , FP Normal Attack
True Negative, TN Normal Normal
False Negative, FN Attack Normal

Thus, from these four terms performance of an IDS can be
easily calculated using the following equations [40]:

Precision, P =
TP

(TP + FP )

Recall, R =
TP

(TP + FN)

F1 score =
2 ∗ P ∗R
(P +R)

As our dataset contains a lot of benign data, evaluating the
system with a weighted average F1 score does not provide a
clear picture. We consider the macro-average F1 score as it
computes the metric independently for each label and then takes
the average to treat all labels equally.

VII. EVALUATION RESULTS AND DISCUSSION

The experiments are conducted on Dell Precision 7920 Tower
workstation with Intel Xeon Silver 4110 CPU @3.0GHz, 32 GB
memory, 4 GB NVIDIA Quadro P1000 GPU. The performance
of G-IDS is evaluated in two perspectives, contrasting with the
performance of a standalone IDS (S-IDS).

A. Evaluation based on the Size of Training Dataset

To investigate the performance of S-IDS and G-IDS, we split
the entire training dataset into five parts. We take 20%, 40%,
60%, 80%, and 100% of the training data to observe GAN’s
contribution with a growing dataset.

1) Label-wise Evaluation: Firstly, we train S-IDS model
without the assistance of GAN, which gives good results in
the prediction for a few of the specific labels. However, S-
IDS struggles to predict a few of the classes accurately as the
number of training samples for those particular classes is not
sufficient. As shown in Fig. 3(a), the F1 score of S-IDS for
label 5 is approximately 0.70 while considering 20% of data
as the training data, and it increases gradually up-to 0.78 with
the increasing training dataset. However, training G-IDS with
the GAN generated data along with the original data boosts
the performance of G-IDS drastically. As shown in the figure,
the F1 score of G-IDS reaches up to 0.90 for 20% of data as
training data and becomes 0.96 for 40%. It is clear from the
figure that G-IDS performs much better than S-IDS in attack
detection. However, the fall of the F1 score for G-IDS at 60%
is not surprising as GAN’s performance is highly random as it
works by taking random noises as input. Similar improvements
are also observed for label 6 and 9, shown in Fig. 3(b) and
Fig. 3(c), respectively. Though there are improvements in the
predictions for most of the labels, we only show these three
labels as an example.

382

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 18,2024 at 04:06:32 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

(c) (d)

Fig. 3. Performance evaluation of G-IDS and S-IDS in the prediction (F1 score) with respect to the size of training dataset for (a) label 5, (b) label 6, (c) label
9, and (d) overall dataset.

2) Overall Evaluation: In this part, we contrast the per-
formance S-IDS and G-IDS on overall prediction for all the
classes. As mentioned in the previous section, we use the
macro F1 score as the metric, as it gives better insight into
the model’s performance on distinct labels. Fig. 3(d) represents
the macro F1 score of S-IDS and G-IDS on the same test data
while trained on different sizes of training data. We see that
the macro F1 score of S-IDS improves from 0.82 to 0.87, as
training data increases from 20% to 100%. On the other hand,
G-IDS’s performance improves by approximately 4% as GAN-
generated synthetic data are also considered in training. For the
full training dataset, while S-IDS achieves a maximum macro
F1 score of 0.87, G-IDS can take it at least up-to 0.91.

Table III summarizes the contrast of S-IDS and G-IDS
performances when both are trained on 40% of the original
data. The first three columns represent the performance metrics
of S-IDS for each class. If the F1 score of any class is less
than the threshold, which we consider as 0.98 in this case, the
controller asks the data synthesizer module to generate more
synthetic data for that specific class to improve the performance
of IDS.

Initially, S-IDS has an F1 score of 0.85, 0.71, 0.55, and 0.33
for the labels of 2, 5, 6, and 9, respectively. These labels are

considered as weak label and are sent to the DSM to generate
more training examples. GAN is trained on each of these labels
and then generates 25% new samples for each of these labels.
Once verified by the controller, the newly generated synthetic
samples are added to the existing hybrid dataset. The updated
hybrid dataset is used to train the IDS again, and the whole
process is continued. The second part of Table III shows the
performance of G-IDS, which is trained on the hybrid dataset.
From the results, we see that the detection rates of most of
the classes are improved. To be more specific, the F1 score
of labels 2, 5, 6, and 9 increases up-to 0.93, 0.96, 0.68, and
0.41, respectively. Even though, by nature, GAN possesses
the uncertainty of generating noisy unexpected data for one
label that may overlap with the distribution of other labels, the
controller module declines such kind of bad data and keeps the
performance of G-IDS improving.

B. Evaluation of Improvement in the Training Stability

As well as improving the final detection rate for different
attacks, GAN also enhances the stability of the IDS’s training
process. Fig. 4 shows the performance of the model during
training for four random targets. To present the performance
of our proposed framework, we plot the F1 score for the test
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TABLE III
PERFORMANCE METRICS OF S-IDS AND G-IDS WHEN TRAINED WITH 40% OF ORIGINAL DATASET

Labels S-IDS G-IDS SupportPrecision Recall F1 Precision Recall F1
1 0.99 0.99 0.99 0.98 0.99 0.99 2003
2 0.83 0.90 0.85 0.90 0.95 0.93 1047
3 1.00 1.00 1.00 1.00 1.00 1.00 1070
4 1.00 0.98 0.99 1.00 0.99 0.99 9707
5 0.55 0.98 0.71 0.93 0.99 0.96 840
6 0.38 0.98 0.55 0.52 0.97 0.68 1389
7 1.00 1.00 1.00 1.00 1.00 1.00 2805
8 1.00 1.00 1.00 1.00 1.00 1.00 779
9 0.20 0.98 0.33 0.27 0.90 0.41 820

10 0.98 0.99 0.99 0.98 0.99 0.99 550

(a) (b)

(c) (d)

Fig. 4. Stability analysis of S-IDS and G-IDS during training process for (a) label 1, (b) label 3, (c) label 5 and, (d) label 10.

dataset for the increasing epoch. In the figure, we only show
the first 100 epochs, which is sufficient to represent the contrast
of the performance. From the figure, it is clear that S-IDS
takes much more epochs to train the model and settle the F1
score to the final value. For S-IDS, most of the labels need
approximately 50 to 100 epochs or even more to settle.

On the other hand, G-IDS does a pretty good job in the
training stability. Almost all of the targets become stable within
approximately 25 epochs. Thus the training process of G-IDS is
much more stable than S-IDS. As the GAN-generated samples
fill the gaps in the data distribution, it becomes easier for the

IDS to learn the distribution of the training data and get settled.
Thus, in summary, G-IDS improves performance by balancing
the imbalanced dataset as well as generating missing data.

VIII. CONCLUSION AND FUTURE WORK

GAN is an influential tool in the deep learning area. IDS
is also another fundamental agent for the CPS domain. In this
paper, we propose a GAN supported IDS to unite them, which
performs better than standalone IDS for an imbalance dataset or
in any emerging field of cyber-physical systems where very few
amounts of data are available for model training. We implement
our model in a benchmark dataset, NSL KDD’99. Experimental
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analysis shows that our proposed G-IDS framework predicts
with better accuracy than independent IDS, even after being
trained with a small original dataset in the beginning. The
centralized, computationally expensive and time consuming
nature of G-IDS framework require further investigation. In
future work, we aim to focus on creating a dynamic, efficient,
and lightweight decentralized algorithm to implement it in the
edge devices of the IoT realm.
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